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Abstract

The flow of water on a rotating plate in an open non rotating cylinder is studied.
Strong symmetry breaking where the free surface forms in a non axis symmetric
way is observed. The system is operated at high Reynolds numbers (105 − 106) and
the character of the symmetry breaking is studied by varying H, ω and ν. It turns
out that the number of corners in the observed shapes increases with frequency, and
decreases when the water level is increased. Changing viscosity does surprisingly
not lead to big changes in the phase diagram and thus the Reynolds number does
not necessarily describe the system well. We investigate the effect of perturbating
the system with various mechanical disturbances and the effect of changing the
surface tension. For large ranges of frequencies, the shapes are stable to mechanical
perturbations, while it is seen that they become unstable close to the transition
between two shapes. It is also found that forced misalignments of cylinder and
bottom plate have no observable influence on the shapes, so we believe we are dealing
with spontaneous symmetry breaking. However, we found that changing the surface
tension introduces some change in the phase diagram. Much has been written about
the subject of the flow of a fluid in open cylinder with a rotating bottom plate but
none of literature encountered has reported the spectacular deformations in the free
surface observed in this experiment.
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Introduction

A simple experiment can be made where water in a cylinder is rotated by the bottom
plate and the surface is free. When this experiment is made, it is expected that the
surface deforms as a circular shape when seen from above, e.g. as seen in Newton’s
bucket1.

We conducted the experiment and something surprising happened when we
started to change the rotational rate of the bottom plate. The expected round
shape of the surface of the water changed dramatically for some certain rotational
rates. Instead of the usual round shape we discovered the formation of elliptic,
triangular, quadratic etc. shapes in the free surface of the water when varying the
rotational rate and the depth of the water. The deformations of the surface are so
large that they are easily seen by the human eye. When the rotational rate of the
plate is great enough, the deformation of the surface is seen to persist all the way
down to the plate, which makes the phenomenon even more spectacular (see figure
1.1).

Even though we have used a lot of effort on searching the literature for similar
observations we have found nothing directly comparable to the experiment we have
made. This comes as a bit of a surprise to us, since similar systems has been studied
a lot.

Much effort has previously been put into understanding the flow produced above
a rotating disk in a fixed cylindrical container with an open top. These experiments
are usually operated at so low rotational rates that the free surface of the water
has remained essentially flat and horizontal. Most of the effort has been put into
understanding the internal flows. Symmetry breaking in these internal flows has
also been studied in detail. Some of the patterns that have been observed in these
flows exhibit a structure with a kind of corners that look a bit like the ones we have
seen. However, these patterns are not seen as deformations in the free surface and
it seems that they are of a different character than the shapes we observe.

In this project we will investigate these shapes, their characteristics and try to
give a possible explanation as to why they occur. The flows in the cylinder are very
complicated to calculate since the free surface and it’s shape should be taken into
account. Calculating these flows reaches beyond the limitations of the project.

The project is experimental and centered around observations of the phenomena
and the interpretation of these. We will introduce a phase diagram for each of the
two setups and try to perturbate the system in many ways to reveal it’s character-
istics. The natural question as to why the phenomenon occur is difficult to answer
due to the very complicated flow of the water, but we will make an attempt to make
a qualified guess based on the literature and observations.

Trying to understand the fundamental dynamics of the system, we will start
off with a presentation of the parameters that determine the flow characteristics
followed by a description of fluids in rotation.

1Newton’s bucket is a rotating cylinder where both the bottom and walls are rotating. Even-
tually the surface will be perpendicular to the fictive gravity field.
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(a) k = 0 (b) k = 2

(c) k = 3 (d) k = 4

(e) k = 5 (f) k = 6

Figure 1.1: The different kinds of shapes that appear in the free surface for the 131 mm
setup. k denotes the number of corners in the shapes. Only shapes that reach the bottom
plate are shown, since they are easier to photograph. Far most of the shapes we observe
are symmetric like the ones shown here, but more irregular shapes have also been observed.
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1.1 Flow characteristics

The general behavior of fluids in motion often depends on the relation between some
flow parameters, and these can often be expressed as a dimensionless number or a
ratio depending on the characteristics of the experiment (i.e. length scale, velocity
scale etc.).

Dimensionless numbers are attractive in fluid

Figure 1.2: Flow from right to left
through a pipe: a) Laminar flow
(Re = 1150), b) turbulent flow
(Re = 2520). From (Schlichting,
1999) p. 13

dynamics, because some of them gives the means
to compare for instance flows observed in the
laboratory with flows seen in the atmosphere.
If the naturally occurring phenomenon and the
experiment in the lab have the same dimension-
less numbers attached they should exhibit the
same physical behavior in spite of the very dif-
ferent absolute length and velocity scales. Ob-
viously, not all dimensionless numbers have this
property, so choosing the right one often gives
important insight into which physical phenome-
non is the most dominant in the experiment.

In this experiment, the following key param-
eters are at hand to construct dimensionless
numbers: The radius of the cylinder, R, the
water level, H , the frequency of the rotating lid Ω and, the viscosity of the fluid
ν. Besides that, a number of other parameters such as the surface tension and the
gravitational acceleration could also be used, but we will not list them all here.

In the following sections we will present a couple of the most important dimen-
sionless numbers in the experiment.

1.1.1 The Reynolds number

Defined by

Re =
vL

ν
, (1.1)

the Reynolds number gives an approximation to the ratio of inertial to viscous forces
on the fluid. v denotes a typical flow speed, L denotes a typical length scale of the
flow over which the velocity changes by v, and ν denotes the kinematic viscosity.

In this experiment we will define the Reynolds number to be

Re =
ΩR2

ν
,

so v = ΩR and L = R which seems reasonable.
For small values of the Reynolds number, Re<< 1 the flow creeps along slowly,

whereas for Re>> 1 the flow tends to be lively.
In general there are two different types of flow: Laminar and turbulent flow,

which can both be characterized using the Reynolds number. The difference between
the two can most easily be explained if one considers the flow through a pipe as is
shown in figure 1.2a,b

At low flow velocities, or more precisely, at low Reynolds numbers we see layered
flow lines 1.2a. Different layers of fluid move with different velocities, but without
exchange of particles perpendicular to the overall flow direction. This is laminar
flow.

In sharp contract to this, at higher Reynolds numbers, the fluid makes highly
irregular motion perpendicular to the flow direction as shown in figure 1.2b. This
is turbulent flow characterized by randomly fluctuating motion. (Lautrup, 2002,
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Acheson, 1990) In this experiment we operate at Reynolds numbers in the range
105 − 106 when dealing with water and in the range 103 − 104 when dealing with
ethylene glycol.

1.1.2 The Froude number

The Froude number can be described as the ratio of the square of inertial forces to
the square of gravitational forces on the fluid and is defined by

Fr =
v2

gL

where v and L is defined as above, and g is the gravitational acceleration. There
are several relevant definitions of the Froude number for this experiment depending
on whether you choose L = R or L = H . We will use

Fr =
Ω2R2

gH

as a definition of the Froude Number.

1.2 Fluids in rotation

1.2.1 A simple model: Fluids in almost solid body rotation

R

θF

C

H

Ω

m

mg

r

z

Figure 1.3: The rotating bucket

Our first approach to understanding the dynamics of this experiment is to con-
sider the following simple model for the experiment; a volume of fluid in a rotating
cylinder. The entire cylinder, including the bottom and walls, are rotating at the
same rate, so eventually the fluid will be in solid body rotation with the cylinder.

Now, consider a small volume of fluid of mass m at the surface under rotation in
a cylinder as seen in figure 1.3. In the co-rotating reference frame the forces on m
is gravity, mg, the centrifugal force, C = mΩ2r · r̂, and the forces exceeded by the
surrounding fluid, F. The forces from the surrounding fluid must be orthogonal to
the surface of the fluid – if not, m would move tangentially which it does not since
the shape of the free surface is stationary.

To compute the shape of the free surface, consider the following: Since m is
stationary, we have that

|F| cos θ = mg and |F| sin θ = |C| = mΩ2r,
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and thus

tan θ =
Ω2r

g
.

But dz
dr = tan φ so we have that

∫

dz =

∫

Ω2r

g
dr,

which gives us that

z = z0 +
Ω2

2g
r2.

So, in this case the free surface of the fluid has the shape of a parabola.
For sufficiently high rotation rates the fluid is pushed against the side and a

jump occurs, that is, a fluid-free area of radius r0 forms in the middle of the bucket.
In the moment when a jump appears we have that

z = 0 ⇒ r = r0 ⇒ z0 = −Ω2

2g
r2
0 ,

so

z(r) =
Ω2

2g

(

r2 − r2
0

)

. (1.2)

Now, volume conservation gives that

πR2H = 2π

∫ R

r0

Ω2

2g

(

r2 − r2
0

)

rdr = 2π

[−Ω2

4g
(r2

0R
2 − r4

0) +
Ω2

8g
(R4 − r4

0)

]

Solving this fourth order equation, we get that

r2
0 = R2

(

1 −
√

4Hg

Ω2R2

)

. (1.3)

From this we deduce three important things. First, the size of the jump increases
whenever Ω increases, as expected. Second, the dynamical height of fluid at the rim

of the cylinder is z(R) = Ω
2g

√

4Hg
R2 , so this also increases as Ω increases. Finally the

jump first occurs at the frequency Ω =
√

4Hg
R2 . Besides that, we note the appearance

of the dimensionless number Ω2R2

Hg which we regonice as the Froude number.
So far we have restricted ourselves to the case in which the fluid inside the

cylinder is in solid body rotation along with the rest of the system. This implies
that the azimuthal velocity of the fluid inside the cylinder is v(r) = Ωr. However,
in our experiment the boundary conditions dictate that v(r) must go to 0 as r
approaches R. An Ansatz for v(r) would therefore be v(r) = Ωrf(r) where f(r) is
a function that fulfills the following conditions

f(r) =

{

1, if r = 0,

→ 0, as r → R,

Examples of such functions are

f1(r) = k1

√

1 −
( r

R

)2

, and f2(r) = 1 − e−k2(1−r/R).

where k1, k2 are some scaling parameters.
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(b) Velocity profiles generated by the ro-
tating bucket, f1, and f2.

(c) Experimental velocity profile. From (Mory and
Spohn, 1992)

Figure 1.4: Velocity profiles, coresponding free surface and exprimental results

Please note, that in both cases the continuity equation

∇ · v =
1

r
(ru)r + wz = 0,

is still fulfilled.
The functions are plotted in figure 1.4(a) and are in good agreement with the

experimental data seen in figure 1.4(c).
The free surface profiles generated by f1 can be seen in figure 1.4(b), where it

is compared to that of the rotating bucket.
The model discussed above is a very crude model for describing the real experi-

ment. However we expect that most of the results from above, e.g. that the size of
the jump increases as Ω increases, still holds in our experiment.

Flow above a rotating disk

We are now going to investigate the flow above a rotating disk. The problem of
describing the flow above an infinite rotating disk in a fluid was first solved by von
Kármán (Kármán, 1921). The equations governing the system will not be given
here, but can be found in the appendix A.1 where the solution is discussed. The
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(a) The flow as described in the von
Kármán model. From (Schlichting,
1999)

(b) Sketch of in the cylinder flow as we
imagine it. The grey area is fluid-free.

Figure 1.5: The flow produced by the von Kármán model compared to the experiment.

Figure 1.6: Shape with 3 corners seen in perspective

results of the calculations are presented in figure 1.5(a) which shows the streamlines.
The viscous forces drags the fluid near the disk radially outwards under the action
of the centrifugal force. The displaced fluid is replaced by some new fluid which is
axially sucked into the boundary layer. The rotating disk is acting as a centrifugal
pump.

When comparing the von Kármán model to our experiment, one has to keep in
mind that firstly the von Kármán model is not valid in a confined geometry such
as the one at hand, and secondly that the von Kármán model does not take neither
the free surface effects nor the jump in the middle of the rotating fluid into account.
Based purely on observations, i.e. pictures and movies, we imagine that the flow
inside the fluid is as shown in figure 1.5(b). Centrifugal pumping is still observed,
a fact which is also supported by (Mory and Spohn, 1992), but clearly the flow
depends very much on the interaction between the different boundary layers.
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Setup and methods

In this section we first describe the technical details of the setup. Second, we will
describe how we did the measurements and try to estimate the errors related to
these. Finally we will discuss the methods we used when making measurements.

2.1 Technical description

The setup consists of a cylinder made of Plexiglas, a motor and a circular plate,
placed inside the cylinder, which is rotated by the motor. The motor is an ICME
Type T63BX2 electric motor and is equipped with a frequency generator T-verter
N2-Series and a gearing device. The frequency generator has a counter that runs in
the interval [0.00 : 49.00] in steps of 0.01, but in practice the motor can run no slower
than about 7.00 due to friction. We will denote the frequency generator counter
value by Ωc, and it is related to the frequency of the plate Ωp by the relation Ωp =
2π(αΩc + β) with values we have determined experimentally as α = 0.15± 0.01Hz
and β = −0.1± 0.2Hz.

The 131 mm setup

The setup is depicted in figure 2.1(c). The cylinder has an inner radius of R =
131±3mm and is placed on a table where 4 steel rods holds a metal plate on which
the motor is mounted. 4 screws which makes it possible to adjust the horizontal
alignment of the motor. An axle of length 500± 5mm and radius 14.00± 0.05mm
connects the motor with the bottom plate. Unfortunately, the bottom plate is not
placed exactly perpendicular to the axle, and the axle is only known to be vertical
to an accuracy of 0.2 degrees, because we can not measure the alignment of the
motor to a satisfactory accuracy. The misalignment is responsible for a vertical
motion of the plate of about 2mm at the edge of the plate, which we will call the
wobbling effect.

The 194 mm setup

The setup is depicted in figure 2.1(d). In this setup the cylinder has a radius of
R = 194± 3mm and is placed on a table and stabilized by the weight of the water
and 4 wooden bricks. In this setup the same motor is mounted from below which
make both experiments and observations easier. In addition, the cylinder has been
provided with a tap to control the water level,H , easily. The axle goes into the
bottom of the cylinder through a bearing, which makes it possible to adjust the
distance from the plate to the bottom of the cylinder. However, it turned out that
it was better to control the water level instead of moving the plate. The 194mm
setup was much better aligned than the 131mm setup and did only show a wobbling
effect of less than 0.5mm.
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(a) Picture,
131mm setup.

(b) Picture, 194mm
setup.
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(c) Schematics, 131mm setup
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(d) Schematics, 194mm setup

Figure 2.1: Pictures and schematics for the experimental setups.

2.2 Measurements

The depth of the water can be controlled in two ways: Either by simply controlling
the volume of the water in the cylinder or by moving the axle. The depth is measured
with a caliper to an accuracy of 0.2mm, but due to the wobbling of the plate and
the fact that the table is not exactly horizontal, there will always be an uncertainty
of at least ±1mm.

We shall denote the number of corners of the shapes observed by k, and in some
cases we will speak of states instead of shapes, when this is more appropriate. With
this definition a k = 0 shape is a circle, a k = 2 shape is a ellipse, a k = 3 shape is a
triangle etc. (See fig. 1.1) The number k is directly observable for frequencies not
much higher than the transition frequency between the k = 3 and k = 4 states. For
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higher frequencies it is necessary to take a picture to determine k, since the shapes
are rotating too fast to see with the naked eye.

For frequencies not much higher than the transition frequency between the k = 2
and k = 3 states, the frequency of the k-corner shape, Ωk, is determined with a
stop watch to an accuracy of 0.15rad/s. In the 194mm setup it is also possible to
determine the frequency of the four corner shape with the stop watch. Explicitly,
we determine the frequency of a k-corner shape by counting 10 corners passing by
and measuring the time it takes. We do this 3 times for each shape which gives
us the mean time and uncertainty. The meantime t is related to the frequency of
shapes by the relation Ωk = 2 · π 10

t·k .
For higher frequencies a strobe can be used. The strobe is flashing at the water,

and because the shape is rotating and the corners are almost identical, the shape
will appear to be standing still in the lab frame, when the frequency of the strobe is
exactly set such that it flashes every time a corner passes by. One should be aware
that the shape will also appear to be standing still if the strobe flashes once for
every second, third etc. time a corner passes by. It turns out to be most convenient
to find the highest frequency where the shape appears to be standing still, to ensure
that the strobe flashes at exactly every corner that passes by. Then, the frequency
of the k-corner shape is found by reading off the strobe’s frequency and divide by
k.

(a) k = 3 (b) k = 4

(c) k = 5

Figure 2.2: Different shapes observed in the 194mm setup. Note that the 4-corner shape
almost appears as a square. We have also observed a more star-like 4-corner shape as seen
previously.
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(a) A 2 corner shape seen
from the side

(b) A 2 corner shape seen
from the front

Figure 2.3: 2 corner shape in Ethylene Glycol. The two pictures were taken within few
seconds.

To check if the shape is phase locked the strobe is set in such a way that the
plate appears to be standing still in the lab frame. This can be done in the 131mm
setup, because the plate has marks that indicates the rotation. The frequency of
the figure is locked to that of the plate with a rational factor if and only if the shape
also appears to be standing still.

Note that these measurements are very unpleasant because the strobe is the only
light in the lab, and one should be aware of not making too many measurements
without pause. Hence, we preferred to use the stop watch, since the uncertainties
of these measurements were satisfactorally small.

2.3 Experimental method and observations

When conducting the experiment two parameters can be controlled. First, the wa-
ter level is set to the desired value. Second, the frequency of the motor is set to
approximately 1Hz, which is the lowest possible frequency, and the frequency is
thereafter increased in small steps of about 0.1Hz. This method is necessary to
follow, since it turns out that hysteresis is evident in the setup – we shall return to
this in more detail later. Furthermore, it is necessary to increase the frequencies in
small steps, since some of the states only exists in very narrow frequency intervals.
In adition to this, the system sometimes need some seconds to stabilize.

We will now go through the series of events that occur as the frequency is
increased. When the frequency is set to the starting frequency of about 1Hz, we
observe either a k = 0 or a k = 2 shape, all depending on the water level. It should
be mentioned, that the state is very difficult to determine for such low frequencies
because the deformation of the surface is not very large.

As the frequency is slowly increased, the k = 2 shape eventually becomes clearly
visible because the deformation of the surface gets larger. In addition, the surface
comes closer to the plate. For some certain frequencies and water levels the system
is seen to oscillate between 2 or more states. It is even seen to oscillate between
the two types of sub states a and b, where a denotes the sub state in which the free
surface reaches the plate and b denotes the sub state in which the free surface does
not reach the plate, i.e. the plate is completely covered by water.

As the frequency is increased further, the k = 2 state becomes more unstable
and the shape of the surface becomes irregular. When the frequency reaches the
transition frequency between the k = 2 and k = 3 states, the shape of the surface

11



Figure 2.4: Intermediate state between a k = 3 and a k = 4 shape. This particular shape is
regarded as a highly irregular k = 4 shape, since the fourth corner has just developed, but
is still not stable. Although states like this occationally appear near the transition states,
the vast majority of the shapes observed are regular.

is either irregular and it is difficult to determine if it is a k = 2 or k = 3 shape or
it finds an intermediate k = 0 state.

Near the transition frequency, typically within 0.3Hz, the states are unstable,
and it is usually possible to observe k = 2 as well as k = 3 states at the same
frequencies depending on whether the frequency is changed from lower frequencies
to higher frequencies or vice versa.

This overall behavior repeats itself for the k = 3, k = 4 states and so on, though
there are some variations. As an example a k = 3 state is seen to oscillate between
k = 0 type a and b, and k = 3 type a and b states – all together four distinct states.
It should also be noted, that the frequency interval, in which a particular shape
exists, gets narrower as k increases.

In general we can say that k increases whenever frequency increases and k de-
creases when the water level is raised.

12



Results

In this section we will present the results obtained as explained in Setup and meth-
ods. We started out using the 131 mm setup and later on the somewhat bigger 194
mm setup. Both is depicted in figure 2.1. The 194 mm setup provided the means
for making a second phase diagram to verify earlier results, taking better pictures
and making movies since the axle is mounted from below.

Below we present our results in the following order. First we present the phase
diagrams, showing at which water levels, H , and plate frequencies, Ωp or f , the
different shapes occur for both the 131 mm and the 194 mm setup. Next we
present the results of our investigation of the phase locking of the rotating shapes.
This is interesting since when a k-shape occurs in the free surface the frequency,
Ωk, with which it rotates relative to the lab frame is different from that of the plate.
After that we present the results about hysteresis. The system apparently has the
property that going from low to high plate frequencies is not quite the same as going
from high to low frequencies.

Motivated by (Spohn et al., 1993) we then turn to investigate the effect of
changing various key parameters in the experiment, and thereafter we discuss the
effect of these perturbations on the stability of the shapes. Finally we look at some
of the different states of the system, and the transitions between these.

3.1 Phase diagram

One of the main results of this project is the construction of the phase diagrams.
They can be seen in figures 3.1 and 3.2. The phase diagrams show the number of
corners k as a function of the water level, H , and the frequency of the rotating
plate, f . As it is seen they group together, some in islands and some in larger areas
that seem to stretch beyond the scale of the phase diagram produced.

There are some transition states where a k = 0-state occurs between e.g. a k = 2
and a k = 3-state. This phenomenon is not solely due to the fact that the shape
became highly distorted in the transition states — sometimes stable k = 0 states
appeared between two states.

3.1.1 Water in 131mm container

The phase diagram is build from 676 data points collected by slowly increasing the
frequency for a given height – hence, the data is seen as vertical lines. The phase
diagram was done with water in the cylinder of radius 131±3mm. We did a sample
run of the experiment before we made the actual diagram, so we knew roughly where
to find the different states. Therefore we started the experiment at the height just
before the first shapes appeared, and we stopped at the height where water would
come over the side if we turned the plate too fast.
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Figure 3.1: Phase diagram for the 131 mm setup with water.
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Figure 3.2: Phase diagram for the 194 mm setup with water.
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Figure 3.3: Phase diagram for the 131 mm setup with water plotted using the Reynolds
number and the aspect ratio H/R.

3.1.2 Water in 194mm container

The phase diagram for the 194mm setup was done in the same manner as the
131mm setup, and it is made from 447 data points. The 194mm setup was able
to contain more water, so we were able to make the phasediagram for the same
values of the aspect ratio H/R as in the old 131mm setup. Unfortunately, due to
overheating caused by friction in the bearing, the 194mm setup could not be run
at high driving frequencies for longer periods of time. So, since high frequencies are
needed to see the shapes for large H/R, we were only able to make the experiment
for the same values of H as in the 131 mm setup.

If the two phase diagrams are compared, several observations can be made. First
of all, the overall structure and appearance of the the two phase diagrams are very
similar. The k-states follow the same pattern on both figures, and the same islands
of k-states occur at roughly the same places. Another similarity is that for the same
water level, the k-states appear at roughly the same frequencies in the two setups.
This is somewhat surprising, because it indicates that the cylinder radius, R, is in
fact not a crucial parameter in the experiment. We shall discuss this later in greater
detail; but from now on we will plot the data using the absolute height, H , instead
of the aspect ratio, H/R, which has been used elsewhere (Mory and Spohn, 1992).
The main difference between the two phase diagrams is that in the 194 mm setup
we have made fewer observations of states with higher k-numbers. This indicates
that somehow it gets more difficult for the surface to form shapes with many corners
with increasing R.

The transitions between different k-states in the two phase diagrams for water
and the one for ethylene glycol are shown in figure 3.8. It is seen that the transitions
follow straight lines and that these lines are roughly equal for the two setups in
water. We shall return to a further discussion of this diagram later.
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Figure 3.4: Frequency of the k-shapes as a function of the frequency of the bottom plate
for the 194mm setup.

3.2 Phase locking

We have investigated the frequency of the k-shapes, Ωk, as a function of the fre-
quency of the bottom plate, Ωp. The data was collected for the heights 51mm,
60mm and 70mm in the 194mm setup. These were chosen due to the large amount
of ellipses, triangles and squares. The results are plotted in figure 3.4.

We had hoped for a simple relation for the phase looking like Ωk = 1
k Ωp. The

k = 2 state follows the line with slope 1
2 for the first two measurements, but then

deviate considerably making it difficult to determine whether or not it is locked by
a factor of 1

2 , 1
3 or if it is locked at all. The slope of the k = 3 state follows the line

with slope 1
3 for the first few measurements, but as before it is hard to determine

the actual locking parameter, if any. It is seen that the k = 4 state follows the
Ω4 = 1

4Ωp line, giving the strongest indication that phase locking is occurring.

3.3 Hysteresis

While making the measurements it turned out that at least two different k-states
can be observed for the same plate frequency. We found two ways to make the
system relax into different states for the same frequency. First, when frequency
is changed in sufficiently large steps (≥ 1Hz or so) and second, when turning the
experiment around i.e. starting the experiment at high frequencies which is then
decreased.

The frequencies for which two different states can be observed is usually near
the transition frequency between two states, as seen in figure 3.12(d). The k-states
are not very stable around these transition frequencies, so it is not very surprising
that the system can end up in either one of the two states when the frequency is
altered in big steps.
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k

Ω
Figure 3.5: Schematics of the hysteresis observed in the system. Comming from different
(frequency) directions makes it possible to have more than one k-state for each Ωp.

Starting at the highest possible plate frequency (∼ 7.25Hz) and then decreasing
the frequency in steps of 0.15Hz is a reversal of the experiment. It is a bit of a
surprise that the system is behaving differently in the two situations. Figure 3.12(d)
indicates that some hysteresis is evident in the system, but we can not tell if it is
due to the imperfections in the setup or if it is an intrinsic feature of the system.
Figure 3.5 shows schematically the hysteresis we observe.

3.4 The effect of changing key parameters in the

experiment

3.4.1 Substituting water with Ethylene Glycol

To investigate the experiments dependence on viscosity, we filled the 131 mm cylin-
der with ethylene glycol, which has a kinematic viscosity ν about 20 times greater
than that of water (D. R. Lide, 1995). Thus, since Re goes as 1

ν we expect the same
flow characteristics in the experiment at frequencies 20 times less compared to the
experiment with water. As the motor runs very badly at frequencies less than about
1Hz, which corresponds to Re = 6, 300 in ethylene glycol. From the phase diagram
(figure 3.3) we should expect to observe nothing but the k = 0 state. However, as
seen in the figure 3.11, surprisingly we also observe the k = 2 and k = 3 states. This
is not quite what we expected, since it seemed reasonable to expect the Reynolds
number to be the characteristic number of the system.

Instead of the Reynolds number, we might assume that the Froude number, as
previously described, could be the characteristic number for the system. Figure
3.11(b) indicates that it would be a slightly better idea to use Fr instead of Re,
but the results are not quite satisfactory.

We have tried a number of other dimensionless numbers as well, but none of them
gave a better result. So, since H/R is not a good number either, we have decided
to simply plot everything in raw data — i.e. frequency against water level instead
of using the Reynolds or Froude number. Surprisingly, as seen in figure 3.11(c),
this gives good agreement between the water and ethylene glycol measurements,
indicating that the absolute length scale and frequency is of some use for comparison.
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Figure 3.6: A triangle in ethylene glycol, as seen on the front page. Notice the clearly
visible vortices in the flow direction.

3.4.2 Changing the surface tension

To investigate the influence of surface tension in the experiment we added 5±0.2ml
of concentrated washing up liquid to the water. giving a total concentration of
washing up liquid of 0.05 %. The choice of 51mm was made due to the fact that
this height exhibit all the different shapes and a change would be easy to observe.
Changing the surface tension had an influence on our experiment. In figure 3.12(a)
it is seen that the most of the states still exist, but has moved to lower frequencies.
Please note that ethylene glycol also has a different surface tension than that of
water, but that this experiment was made to isolate the effect.

3.4.3 Misaligning the cylinder

We tried deliberately to misalign the cylinder to see if a misalignment in our setup
was the cause of the symmetry breaking observed. Two kinds of misalignments were
tried. First, the cylinder was tilted by an angle of θ = 1.3 degrees, as seen in figure
3.7(b). We did the experiment for H = 55mm in the 131mm setup. As seen in
figure 3.12(b) no differences was evident within the uncertainty.

Second, the axle was misaligned by θ = 1.0 degrees, as seen in figure 3.7(a), and
nearly no effect was observed as seen in figure 3.12(c).

3.5 Stability and time evolution of the states

In this section we want to describe the time evolution and the stability of the
different kinds of states we observe. First we note that the number of corners k
increases when Ωp is increased (see figure 3.1). If a k-state exists in a given interval
of frequencies, the most stable states are observed close to to the middle of this
interval. The most stable states are stable to quite large mechanical perturbations,
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Figure 3.7: Deliberately misaligned setups.
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Figure 3.8: Transition between k-states for the 131mm setup, the 194 setup and the ethylene
glycol measurements. The k-valued lines indicate the first appearance of the the k’th state.

such as holding a ruler into the water. Even larger perturbations slow down the
water considerably, and hence the stability is decreased. If the perturbation is great
enough, the system is seen to go to the k = 0 state. When the perturbation is
removed, the stable systems returns to the k-state a few seconds after the water has
regained its velocity. See figure 3.9 for an example of a stable k = 3 state.

When the frequency is getting close enough to the endpoints of a given interval
of frequencies, the k-state becomes unstable. Hence, even a small perturbation can
kick the system out of the k-state, and the system does not return to that state.
Instead, if the frequency is close to the upper (lower) bound of the interval, the new
state of the system is either a knew = 0 state or a knew = kold + 1 (knew = kold − 1)
state. For some states, the knew = 0 state is seen to become unstable and decay to
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(a) t = 0.0s (b) t = 0.2s (c) t = 0.4s

(d) t = 0.6s (e) t = 0.8s (f) t = 1.0s

Figure 3.9: Time development of a steady rotating k = 3 shape. As it is seen the shape
has a frequency of about 1 Hz relative to the lab. The plate frequency is about 3 Hz, and
the camera is fixed in the lab.

the knew = kold + 1 (knew = kold − 1) state after a few minutes, which corresponds
to about 500− 1, 000 revolutions of the plate.

For H = 52± 1mm and a stable k = 3 state at a frequency Ωc = 19.50 we have
let the experiment run for 67 minutes without observing any changes.

It should be noted that not all transitions follow this pattern. We have seen some
examples of states that change within a very narrow frequency band. Consider
figure 3.10. The system started out in a stable k = 0 state. At the time t = 0
the frequency is increased by 0.15Hz, and eventually after 20s the frequency of
the water has increased to the frequency corresponding to the new frequency of
the plate. Look at the times beneath the pictures and note how rapidly the state
changes to a stable k = 2 state and note how the water raises 4cm in the center of
the cylinder.

Furthermore, some meta stable states are observed. For some values of H the
system is observed to oscillate between two, three or even four different states.
Mostly the system oscillates between two neighboring states, i.e. between the k = 0
and the k = 2 state etc., but sometimes the system can be seen to oscillate between
the k = 2a and k = 2b states etc., where a denotes the sub state where the plate is
completely covered by water, and b denotes the sub state where a part of the plate
is free of water. For a few values of H the system is seen to oscillate in a four-cycle.
For example, for H = 70 ± 1mm and Ωc = 24 the system oscillates in the cycle
(0a → 0b → 3b → 3a). The period of these oscillations are typically of the order of
60 revolutions of the plate, the four-cycle having a period of about 2 ·60 revolutions
of the plate.
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(a) t = 0.0s (b) t = 13.4s (c) t = 20.1s

(d) t = 23.7s (e) t = 24.2s (f) t = 24.9s

(g) t = 26.1s (h) t = 26.3s (i) t = 26.6s

(j) t = 28.1s (k) t = 28.8s (l) t = 29.7s

Figure 3.10: Time development of a transition between a k = 0 state and a k = 2 state.
At t = 0 the frequency is increased from 2.30Hz to 2.45Hz. The water level is 93mm.
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Figure 3.11: Comparison of experiments made with ethylene glycol and water in the 131
mm setup with the same aspect ratios: 0.30, 0.35, 0.38, 0.41, 0.45. We can see that the
Reynolds numbers does not provide a good dimensionless number for describing the system.
The Froude number Fr does provide some means for comparison. We have removed k = 0-
states above Fr = 4.
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Figure 3.12: All the perturbations compared to the unperturbed water system in the 131
mm setup at same water levels.(a) Difference in the occurrence of shapes when decreasing
the surface tension. (b) Effect of a forced misalignment of the cylinder of 1.3 degrees.
(c) Effect of a forced misalignment of the axle of 1.0 degrees. (d) ”Normal” corresponds
to the experiment made with increasing plate frequency. ”Hysteresis” corresponds to the
experiment made with decreasing plate frequency.
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Discussion

We will first discuss the results presented earlier and then draw some conclusions if
possible. Second, we will discuss some loosely formulated ideas of an explanation of
the phenomenon. Furthermore we will compare our experiment to other experiments
that have revealed similar phenomena. Finally we will present a small group of
subjects which we think could be interesting to study further.

4.1 Discussion of the results

4.1.1 Phase diagram

It is interesting to compare the phase diagram we constructed with the one made
by (Mory and Spohn, 1992), which can seen in figure 4.1. Comparing that to figure
3.3 we see that even though the Re and H/R domains are very different there are
still some similarities. E.g. the different states occur in similar domains in both
figures.

For clarity, we should note that whereas we treat the symmetry breaking in the
free surface, the states described in figure 4.1 corresponds to internal symmetry
breaking in the mean flow.

4.1.2 Symmetry breaking, viscosity, and the Reynolds num-

ber

The idea of making the experiment with ethylene glycol was to test if the symmetry
breaking is a viscous phenomenon or if some other mechanisms were responsible.
The work that has been done so far concerning rotating fluids, although most of
it has been done for low Reynolds numbers, has revealed insight to the symmetry
breaking and the flow is quite well understood with the Reynolds number as the
characteristic number for the flow.

Therefore we expected the Reynolds number to be an important parameter in
our system, or actually the characteristic number for the system together with the
water level H or aspect ratio H/R.

Had the Reynolds number been the characteristic number of the flow, we would
expect to find the same shapes in ethylene glycol at the same Reynolds numbers
as we found them in water. Because Re ∝

Ωp

ν and νe is, say 20 times greater than
ν, the frequency for which the shapes exist should be 20 times less than for that
of water. But since the setup cannot operate at such low frequencies, we did not
expect to see any symmetry breaking in the ethylene glycol at all.

Surprisingly it turned out, that the shapes in ethylene glycol appeared in roughly
the same frequency domains as for water (see fig. 3.11(c)). Large difference between
the two experiments is seen, but the difference in frequency is less than a factor of
two, while the difference in Reynolds number is more than a factor of 10.
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Figure 4.1: Phase diagram made by Mory and Sphon. It shows the internal flow symmety
breaking in a system similar to ours. From (Mory and Spohn, 1992).

It should be noted that surface tension should also be taken into account, since
ethylene glycol has a surface tension of about two thirds of that of water (D. R. Lide,
1995), but according to figure 3.12(a) this should not effect the experiment nearly as
much as we expected the Reynolds number to do. Another thing that might effect
our results is the fact that there is some uncertainty in the value of the viscosity of
the ethylene glycol, because the viscosity of ethylene glycol tends to decrease when
in contact with air due to absorption of water vapor. Hence, the effect of using
ethylene glycol instead of water should not be as pronounced as the figure 3.11(a)
indicates. Still, it is far from the result we expected.

Further discussion of the Reynolds number

In the case of our setup comprising of a fixed cylinder of radius R with a rotating
bottom plate of frequency Ωp a typical flow speed could be RΩp (i.e. the azimuthal
velocity of the rotating bottom plate at r = R), and a typical length scale could be
R. Equation 1.1 thus becomes

Re =
R2Ωp

ν
. (4.4)

This clearly shows the subtlety of the definition of the Reynolds number in that
it is far from certain that the fluid, actually moves with a mean azimuthal velocity
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RΩp. A more relevant definition of the Reynolds number in this context is

Re :=
vmeanR

ν
=

R

R

0
v(r)dr

R R

ν
, (4.5)

where v(r) is the radial velocity profile of the fluid representing the azimuthal ve-
locity v as a function of the radial distance r.

In reality, the velocity profiles of fluids in confined cylindrical geometries depends
on a number of parameters; e.g. H/R, ω, ν, the boundary layer thickness and the
surface tension, so one has to be very careful in comparing flow characteristics of
different fluids based solely on Reynolds numbers found by using equation 4.4.

While the Reynolds number describes the viscous properties of a fluid, the
Froude number provides a kind of description of the the inertial properties of the
fluid. That is, if the Froude number is the characteristic dimensionless number
of the fluid, other mechanisms such as gravity waves might be responsible for the
phenomena we observe.

4.1.3 Aspect ratio and the water level

With the new 194mm setup we were able to test the system’s dependency on the
aspect ratio, H/R. Intuitively we expected to find the same states in the new setup
if the frequency was the same and H/R was the same as in the 131mm setup. One
could argue that we should not use the frequency but instead use the Reynolds
number, which should be the same if we were to expect the same distribution of the
states. But since the discussion above indicates that the Reynolds number is not
the characteristic number of the system, it does not seem reasonable to use. After
all, the experiments show that this is not the case.

Surprisingly, we observed the same figures in the 131mm and 194mm setup for
almost the same absolute water levels. This indicates that the experiment is not
or very little dependent on the radius of the cylinder. Of course, this can not be
true for very large and very small R, but it is quite interesting that the size of
the cylinder does not effect the experiment much, at least in the domain we are
working. This leads us to plot our data against H instead of H/R which was our
first intention since it is a dimensionless number.

4.1.4 Transitions between different states

In figure 3.8 we show the transition lines between the different k-states for the
131mm setup, the 194mm setup and the ethylene glycol experiments. Within the
uncertainties of the measurements, not much qualitative difference between the
131mm setup and 194mm setup is seen. First, it seems reasonable to fit straight
lines to each of the transitions of each experiment, and second these transition lines
between the k = 2 and k = 3 states in the 131mm setup has roughly the same slope
as the corresponding transition line in the 194mm setup and so forth.

If, however, figure 3.8 was plot against H/R instead of H , it is clear that the
transition lines would have different slopes, and that is what we mean by saying
that H/R is not a characteristic number of the system. That is, we do not make
the same observations for same H/R, but we do indeed for same H .

Surface tension

An explanation to why we see less states when adding soap to the water is that
soap has the ability of decreasing the surface tension of the water. This might
mean, that it will become more difficult for the water to maintain the shape of the
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surface, especially sharp corners. The more corners there is in a shape, the sharper
the corners must be because they get squeezed together.

Since the surface tension is smaller, the states get unstable for smaller k and
hence we will not expect to find all states if the surface tension is changed sufficiently.

Misalignment of the cylinder

We have not had the opportunity to make experiments in the same controlled en-
vironments as done in (Spohn et al., 1993) and even though it has been shown in
a numerical computation of somewhat same character (Thompson and Hourigan,
2003) that the influence of these misalignments are able to create the main details
of non-axis symmetric open breakdown bubbles, we find that these misalignments
have hardly any influence. We tried to increase the misalignments to estimate the
effects of this. However, from this we can not say anything about the difference
between a perfectly aligned setup and the setup with a small misalignment. Even
though there is a small misalignment in the setup, it will lead to a forced symme-
try breaking, while spontaneous symmetry breaking is only observed in a very well
aligned experiment (Hirsa et al., 2002) p. 29.

4.1.5 Rotating vortices

When an a-sub state, i.e. the sub state which is not touching the plate, is observed,
the corners are seen to be a bubble of air which is pressed into the surface of the
water. These bubbles looks in much the same way as if there was a vortex in each
corner, but it is not easy to see the real behavior of the flow without measuring the
velocity field.

However, we have observed the flow near the corners in a four corner shape,
where the frequency was such that the corners was just above the plate. It turned
out that in front of each corner there was a rapidly rotating vortex (see figure
4.2). It seems reasonable that around each corner in an a-sub state there should
be a vortex, which is responsible for the deformations of the free surface that we
regard as corners. But what happens when the frequency is increased and the shape
eventually reaches the plate? The vortex can not continue rotating under the corner,
simply because there is not water all way around.

What we think happens is that while the corner comes closer to the plate, the
vortex moves in front of the corner, and eventually settles down at the side of the
shape. So, when the corners finally touches the plate, the vortices are lying at the
sides of the shape, a bit like the balls in a bearing, rotating in the same direction
as the plate.

There has been done some modeling of rotating vortices in a circular domain, but
it reaches beyond the scope of this project to investigate in further detail whether
or not the shapes we observe can be modeled with rotating vortices.

4.2 Other work of interest

4.2.1 Other experiments concerning cylindrical flows

As mentioned in the introduction, various types of symmetry breaking in rotating
fluids has been known for some time e.g. (Lopez et al., 2003), but none of them
are really comparable to this experiment, mainly because of the big difference in
rotation rates.

In (Lopez et al., 2003) the experiment they observed a qualitative difference in
the mechanisms leading to symmetry breaking in shallow (H/R = 0.25) and deep
(H/R = 2.0) systems respectively. The experiment was carried out for Reynolds
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Figure 4.2: A four corner shape with a vortex just in front of each corner.

numbers in the order of 103, and it should be noted that the radius of the cylinder
was 25mm, which might increase R dependence of the system.

Three different modes of waves were observed, which have the same symmetries
as the k = 2 to k = 4 shapes we have observed. Still, we can not say if it is the
same mechanisms that lead to symmetry breaking in our experiment, because it
has been carried out in completely different domains of both length scales as well
as Reynolds numbers. Also, what is described in (Lopez et al., 2003) is not the
same spectacular phenomenon, since for the deep systems, the symmetry breaking
did not persist all the way to the surface.

Several other experiments similar to the one described have been carried out to
investigate symmetry breaking in cylindrical flows. But none of them seem to have
much to do with the phenomenon we have observed.

4.2.2 Similar symmetry breaking in other systems

Phenomena similar to the one we have investigated has been observed in a number of
other experiments not directly related to the rotating disk in a cylindrical container.

One example is thermally driven motion in a rotating annulus. Here the setup
is comprised of two concentric cylinders with fluid in between. The inner and outer
cylinder rotates with the same angular velocity Ω, and were it not for the fact that
the inner cylinder is cooled and the outer cylinder is heated, the fluid would be in
solid body rotation with the cylinders. A weak differential rotation is observed at
sufficiently small Ω but as Ω is increased beyond some critical value, the flow hits
an intrinsic instabilility of the system, and a number of non-axis symmetric waves
occur as seen in figure 4.3(a). As Ω increases the amplitude, wavenumber and shape
of the flow oscillates in a periodic manner or becomes steady, but at even higher Ω
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(a) Streamlines in the rotating annulus.
The rotational frequency increases from left
to right. Picture taken from (Acheson,
1990) p. 335

(b) Velocity profiles at
the exhaust of a tur-
bine engine. Lines (full
and dashed) show lines
of equal velocity. Pic-
ture taken from (Cohen
and Wygnanski, 1986)

Figure 4.3: Other systems with properties similar to the rotating disk.

the variations become highly irregular, or chaotic (Acheson, 1990) p.334-335.
Another example is the formation of non-axis symmetric velocity patterns in the

exhaust from aircraft turbine engines (Cohen and Wygnanski, 1986). The analogue
to our experiment in this case comes from the fact that the rear part of the jet
engine consists of a series of rotating plates filled with holes placed in a cylindrical
container.

4.3 Future work

Although we have covered the basic properties of the system, there are several things
to investigate further:

Theory : Little or no theory is available in the literature to explain the phenom-
ena we observe. Therefore, developing such a theory would be one of the main goals
of any further investigation.

Phase locking : Although we did examine how the frequency of the shapes was
related to that of the plate, we would have done it more thoroughly if we had the
time. The phase locking was done in the 194mm setup, mostly because it was much
easier to measure the frequency of especially the 4 corner shapes there, but it would
be interesting to examine the phase locking in the old 131mm setup, because we
would be able to measure the frequency locking parameters for the k=5,6 states.

Periodically varying states 0a → 0b → 2b → 0a → . . .: It would be interesting to
measure the period of a periodicly varying state and incorporate them in the phase
diagram. It would also be interesting to check if they are stable and can oscillate
for, say a couple of hours, or if the system eventually relaxes to one of the states in
the cycle.

Surface profile: It could be interesting to look into the profile of the free surface
as seen from the side because it possibly contains a great deal of information about
the internal flow of the system. Also, to find the slope of the fluid in the corners
of the shapes would be interesting. During our observations we observed that the
slope of the fluid in the corners of some of the shapes was almost infinite or even
negative.
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4.4 Concluding remarks

Throughout this report we have described the surprising phenomenon of symmetry
breaking in the free surface of water. We have described all the visual properties
of the system by presenting some of the hundreds of pictures and movie recordings
made over the course of this project.

We have made measurements of the different states of the system and have
presented them in various ways. Altogether we have gathered more than 1200
single data points, all of which have been collected manually.

We have presented results that describe important physical properties of the
system, most notably by drawing the surprising conclusion that the phenomenon at
play is not viscous, and by presenting the phase diagram.

Though we have not been able to find an answer for all the questions that have
arisen in the process of making this project, we have have gained much knowledge
about the system and the next step will be to start searching for a theoretical model
to describe the phenomenon.
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Notation

Name Unit Meaning Size
R mm Radius of the cylinder
H mm Water level above the rotating plate at Ωp = 0
Ωp rad/s The rotational frequency of the bottom plate
f 1/s=[Hz] Same as above, but used in figures.
Ωc Number read off the frequency generator
Ωw rad/s Rotational frequency of the water
Ωk rad/s Rotational frequency of a k-corner shape
k - Number of corners in a particular shape
ν m2s−1 Kinematic viscosity of water 8.64 ·

10−7m2s−1

νe m2s−1 Kinematic viscosity of ethylene glycol 17.8 · ν =
1.54 ·
10−5m2s−1
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Appendix

A.1 The von Kármán model

Von Kármán (Kármán, 1921) considered the flow above a rotating disk of infinite
radius with the fluid of density ρ and viscosity ν at rest far from the disk. Consider
the cylindrical coordinate system, r, θ, z, illustrated in figure A.1. The rotating disk
is placed at z = 0, and rotates with constant angular velocity ω0 about the axis
r = 0. If we let u, v and w be the velocity in the r, θ and z direction, the flow is
determined by the Navier-Stokes equations in cylindrical coordinates

uur + wuz − v2

r
= −1

ρ
pr + ν

(

urr +
1

r
ur + uzz −

u

r2

)

, (A.6)

uvr + wvz − uv

r
= ν

(

vrr +
1

r
vr + vzz − v

r2

)

, (A.7)

uwr + wwz = −1

ρ
pz + ν

(

wrr +
1

r
wr + wzz

)

, (A.8)

and the continuity equation
1

r
(ru)r + wz = 0, (A.9)

where e.g. vr denotes differentiation with respect to r.
The boundary conditions are

u = w = 0 and v = ω0r for z = 0,

u = w = 0 for z → ∞.

To solve the equations A.6-A.9, we use the trial solutions

u = rω0F (Z),

v = rω0G(Z),

w =
√

νω0H(Z),

p = p0 + ρνω0P (Z),

r

v
w

u

z

ω

θ

0

Figure A.1: The rotating disk.
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where the variable Z is defined as Z =
√

ω0

ν z. Inserting these functions in A.6-A.9
we get a set of ordinary differential equations depending only on the single variable
Z

F 2 − G2 + HF
′ − F

′′

= 0, (A.10)

2GF + HG
′ − G

′′

= 0, (A.11)

2F + H
′

= 0, (A.12)

P
′

+ HH
′ − H

′′

= 0, (A.13)

with the boundary conditions

F (0) = H(0) = P (0) = 0,

G(0) = 1,

F (∞) = G(∞) = 0.

The solutions of A.10-A.12 was carried out by von Kármán in (Kármán, 1921).

Figure A.2: Dimensionless velocity profiles.

Figure 1.5 shows the streamlines, and figure A.2 shows the dimensionless velocity
components. The viscous forces drags the fluid near the disk radially outwards
under the action of the centrifugal force. The displaced fluid is replaced by some
new fluid which is axially sucked into the boundary layer i.e. the rotating disk is in
fact acting as a centrifugal pump. (Mory and Spohn, 1992, Schlichting, 1999)

34


