
Master thesis in geophysics 2008, December 15, 2008

Receiver function modeling
Modeling local subsurface velocity structures using

multiple diverse algorithms

Thomas R. N. Jansson
Niels Bohr Institute, University of Copenhagen

SUPERVISORS:
KLAUS MOSEGAARD AND TRINE DAHL-JENSEN

Abstract
Receiver function analysis is a seismic method utilizing that fact that seismic P-
waves impinging on a subsurface boundary will result in refracted and reflected
P and S-waves. The generated waves are only the result of the local structure
and by deconvolution the local effect can be isolated in a data set called the
receiver function. Reconstructing the local velocity-structure by comparing
the observed receiver functions with synthetically generated receiver functions
is usually regarded as a highly non-linear inverse problem. In this thesis I
will apply four different algorithms to recreate the subsurface velocity structure
from a synthetic data set as well as data collected in Greenland. The algorithms
are: Uniform search, the Metropolis algorithm, Neighborhood search and the
Levenberg-Marquardt algorithm. Overall, the algorithms were successfully in
reconstructing the synthetic data. In the Greenland data set the algorithms
generated models indicating a low velocity layer which is most likely an artifact
of the difference between the wavelet used in the forward algorithm and the
wavelet embedded in the data. This problem affected all the algorithms. For the
Greenland data only the Metropolis and the Levenberg-Marquardt algorithm
found reasonable models. It was also concluded that the Uniform search and
the Neighborhood algorithm do not perform well in high dimensional problems.

Resumé
Receiver function analyse er en seismisk metode, der udnytter, at seismiske
P-bølger, der rammer en laggrænse i undergrunden, vil resultere i reflekterede
og refrakterede P og S-bølger. Nogle af disse bølger er kun resultatet af en
lokal laggrænse i undergrunden og ved affoldning kan information fra den lokale
struktur isoleres i et datasæt kaldet en receiver function. Rekonstruktionen af
den lokale seismiske hastighedsstruktur ved at sammenligne det observerede
datasæt med et datasæt genereret ved modellering er normalt anset for at være
et stærkt ikke linært inverst problem. I dette speciale vil jeg anvende fire
forskellige algoritmer for at rekonstruere hastighedsstrukturen fra b̊ade syn-
tetiske og virkelige data indsamlet i Grønland. Algoritmerne jeg vil bruge er:
Uniform search, Metropolis algoritmen, Neighborhood search og Levenberg-
Marquardt algoritmen. Overordnet set havde algoritmerne alle succes i at gen-
finde hastighedsstrukturen i de syntetiske data. I datasættet fra Grønland fandt
alle algoritmerne et lavhastighedslag som højst sandsynligt var en effekt af en
forkert wavelet i forward modellen. Dette problem p̊avirkede alle algoritmerne.
I det Grønlandske datasæt var det kun Metropolis og Levenberg-Marquardt
algoritmerne som gav fornuftige resultater. Endvidere kunne det ogs̊a kon-
kluderes at Uniform og Neighborhood search algoritmerne var uegnet til høj
dimensionale problemer.

Acknowledgment
I would like to thank Klaus Mosegaard, Niels Bohr Institute, University of
Copenhagen and Trine Dahl Jensen, GEUS, for their guidance, advice and great
help throughout the process. Also, I would like to thank Bo Holm Jacobsen,
University of Aarhus for providing me with a forward model to generate the
receiver functions. This forward model has formed the basis of all my numeri-
cal work. I would also like to thank K̊are Hartvig Jensen and Stine Kildegaard
Poulsen for proofreading the manuscript and giving me many helpful sugges-
tions. Additionally, I would like thank the people at the office for many fruitful
discussions and good company. Finally I wish to thank my family and especially
Pernille for supporting me throughout the process.

Thomas R. N. Jansson
Niels Bohr Institute, December 2008

Preface
It should be stated that I have no geological background or education in inter-
preting whether or not the results I obtain are geological sound. In this light I
have chosen to focus on the numerical and theoretical work related to receiver
function modeling.

I have decided to illustrate as many of the subjects I have covered in the
theoretical chapters as this may serve to make the text easier to read and in
certain cases gives an invaluable intuitive understanding of the subject. In the
result chapter the density of information in the figures is quite high but I decided
on this packing of information so that relevant figures remained grouped such
that I would not end up with half-filled pages. The figures in the result section
are all vector-graphics makeing it possible to zoom to any detail level in the
digital version.

It is my objective in this thesis to investigate how the different algorithms
perform facing the complicated problem of fitting synthetic data to observed
data. A receiver function analysis of Greenland has already been done previ-
ously using other methods and I hope that this work will provide some insight
into the advantages and disadvantages of the four algorithms on receiver func-
tion modeling.

Originally, I was using two data sets from Greenland but since I discovered
a problem in the last few days of the thesis work I did not have the time to
process both data sets with the rewritten algorithms.

Contents

Frontmatter 2
Abstract . 2
Acknowledgment . 3
Preface . 3

1 Introduction 6

2 Receiver functions 8
2.1 Basic seismic . 8

2.1.1 Rotation of data . 10
2.2 What is a receiver function? . 11
2.3 Calculating the receiver function . 12

2.3.1 An example with three arrivals 13
2.3.2 Deconvolution . 15

2.4 The wavelet . 16

3 Greenland data 18
3.1 Retrieving the receiver function from observed data 18

3.1.1 Stacking . 19
3.2 Data from Greenland . 20

4 Inverse problems 22
4.1 Inverse problem theory . 22

4.1.1 The forward problem . 23
4.1.2 The inverse problem . 25
4.1.3 Probabilistic formulation . 25

5 Algorithms 28
5.1 The Monte Carlo Family . 28
5.2 Uniform sampling . 30
5.3 The Metropolis algorithm . 31
5.4 The Neighborhood search algorithm . 33

5.4.1 Voronoi cells . 34
5.4.2 The behavior of the Neighborhood search algorithm 34
5.4.3 Exploring the Voronoi cell . 35
5.4.4 Sampling the cell using Qhull . 36
5.4.5 Sampling the cell using discretized axis 36
5.4.6 Sampling the cell using exact intersections 38
5.4.7 Changing the misfit function . 39

5.5 The Levenberg-Marquardt algorithm . 40
5.5.1 Finding the minimum of S . 41
5.5.2 Levenberg’s contribution . 42

CONTENTS 5

5.5.3 Marquardt’s contribution . 42

6 Algorithm and plotting considerations 44
6.1 Plotting the results . 44
6.2 An insight into the complexity of the problem 46
6.3 General description of the algorithms used on data 47

6.3.1 Uniform search . 47
6.3.2 Metropolis . 47
6.3.3 Neighborhood search . 49
6.3.4 Levenberg-Marquardt . 49

7 Results 50
7.1 Description of the plots . 50
7.2 Synthetic data . 50

7.2.1 Uniform search . 50
7.2.2 Metropolis . 53
7.2.3 Neighborhood search . 53
7.2.4 Levenberg-Marquardt . 53

7.3 Data from station Nord . 53
7.3.1 Uniform search . 53
7.3.2 Metropolis . 56
7.3.3 Neighborhood search . 56
7.3.4 Levenberg-Marquardt . 56

8 Discussion 57
8.1 Comparison of algorithm performance on synthetic data 57
8.2 The wavelet problem . 57
8.3 The importance of Ns in the Neighborhood search algorithm 59
8.4 A non-linear problem . 61
8.5 Removing the P-pulse from the receiver function 62

9 Conclusions 63
9.1 Further work . 64

Bibliography 65

A Mathematics ii
A.1 Convolution theorem . ii
A.2 Approximate Hessian . ii
A.3 The distance from a line to a point in 5 dimensions iii
A.4 The distance from a line to a point in Ndim dimensions iv

B Code vi
B.1 Uniform Search . vi
B.2 Metropolis . vii
B.3 Neighborhood search – Discretizing the axis xi
B.4 Neighborhood search – Exact intersection xvi
B.5 Levenberg-Marquardt . xix

Chapter 1

Introduction

Conventional geological mapping of subsurface structures is done by studying
reflected waves from artificially or naturally generated disturbances such as
dynamite or earthquakes. This is a costly affair since large arrays of geophones
need to be deployed and later collected in order to obtain the data. In remote or
harsh areas such as Greenland it is very expensive and a logistical challenge to
deploy a large array of geophones needed for reflection seismology. Such arrays
do not exist but seismic data are being recorded in local seismic stations placed
strategically along the coast and on the ice shelf itself.

In this thesis I will present a method utilizing earthquake data recorded at a
single station to recover the subsurface velocity structure. The method is called
receiver function analysis. When an earthquake is recorded at a seismic station
the seismic data contain information on the source structure, the propagation
through the earth’s mantle and the local structure beneath the seismic station.
Receiver function analysis is a method to remove the information in the seismic
data regarding the source structure and the propagation through the mantle
in order that the final data set, the receiver function, only contain information
about the local structure beneath the seismic station.

Seismic data contain both noise both from the measurements and from
effects not incorporated into standard geological models. The structure beneath
a seismic station is most likely inhomogeneous and contains a continuously
varying stratification with different rock types. A theoretical model of the earth
can only approximate the structure to a certain degree and must do this using a
finite amount of model variables. The process of finding the model parameters
fitting the observed data is known as an inverse problem.

In this thesis I will present four numerical approaches to reconstruct the
observed waveform. The algorithms are the Uniform search algorithm, the
Metropolis algorithm, the Neighborhood algorithm and the Levenberg-Marquardt
algorithm. The first three of these algorithms are members of the Monte Carlo
family of algorithms which uses random numbers to generate models. The
Levenberg-Marquardt algorithm on the other hand evaluates gradients to nav-
igate between the models. To test the algorithms I started out by trying to
recreate synthetic data and later when the algorithms were reproducing the
synthetic data convincingly, I endeavored into the realm of real-world data sets

7

collected in Greenland.
The thesis will start off with a theoretical introduction to receiver functions

and the four algorithms. This is followed by a description of the synthetic and
real data, the implementation of the algorithms and the presentation of the
results. In the end I will discuss some of the troubles relevant to this work
and finally try to summarize the results I have obtained and compare them to
previous studies.

Chapter 2

Receiver functions

In this chapter I will describe the most basic seismic terms relevant to receiver
functions and after that introduce the concept of receiver functions.

2.1 Basic seismic

Figure 2.1: A simplified structure model
of the Earth. The Moho is usually found in
a depth of 30-50 km.

In order to understand what a re-
ceiver function is some basic seismic
terms have to be introduced. The
structure of the earth has been stud-
ied for over the last 200 years and the
overall structure is known from ana-
lyzing recorded seismic signals. The
interior structure of the earth is strat-
ified as illustrated in figure 2.1 and
the layers are defined by their chem-
ical or rheological properties. The
earth has a mean radius of 6371 km
and the three major layers are the
crust, mantle and core. These lay-
ers can be subdivided many times,
but most important to this thesis is
the boundary from the crust to the
mantle. This boundary was found in
1909 by a Croatian seismologist, see
(Mohorovičić, 1909), who discover an
abrupt increase in seismic velocity in a depth estimated to be 54 km by analyz-
ing seismic data from an earthquake recorded in Croatia. This boundary is now
known as the Mohorovičić discontinuity or Moho. It is typically found in depths
around 30-60 km beneath the continents and 5-9 km beneath the oceans. Later
I will analyze data collected in Greenland where a recent study investigated the
depth to the Moho using receiver functions, see (Dahl-Jensen et al., 2003).

When an earthquake occurs the ground is suddenly shifted inside the earth.
The coordinates of the point-like earthquake is called a hypocenter and the

2.1 Basic seismic 9

(a) P-wave

(b) S-wave

Figure 2.2: Diagrams of P and S-waves. The P-wave is a pressure wave and the
fastest seismic wave. The particle motion is in the direction of the wave. The S-wave
or shear wave is slower and the particle motion is perpendicular to the direction of the
wave propagation. Typical waves velocities are in the order of km/s.

projection on to the surface is called a epicenter. When an earthquake occurs
movements at the hypocenter create waves in the ground. There are two basic
types of waves namely P-waves and S-waves. The P-wave or primary wave,
see figure 2.2(a), is a compressional pressure wave with volumetric disturbances
much like sounds waves. The P-wave is the fastest wave-type and hence the
first to arrive at the seismic station. The S-waves, see figure 2.2(b), is called
a shear wave, since it contains only shearing deformation without change in
volume. The particle motion in an S-wave is perpendicular to the direction of
the propagation of the wave and S-waves cannot exist in fluids. Furthermore S-
waves are the second fastest wave type and for the same reason called secondary
waves.

Seismic data are recorded as a time series of the movement of the earth.
Such a time series is called a seismogram and usually the movement in three
directions, vertical Z, east-west EW , and north south NS is recorded. Figure
2.3 shows one component of typical seismogram and illustrates a third type of
waves arriving later than both the P and S-waves. These waves are a complex
combination of both P and S-waves and are called surface waves since they

10 Receiver functions

Figure 2.3: A typical seismogram recorded on paper moving at a constant speed.
Today all seismograms are recorded digitally. A seismogram is a record of the ground
movement recorded by a seismometer. The first arrival is the P-wave due to the large
speed followed by the slower S-waves and finally the large but much slower surface waves.

are trapped to the surface. The surface waves travel slower than both P and
S-waves and are not important when working with receiver functions.

Earthquakes that occur further away than 1000 km from the seismic station
are termed teleseismic events. The wavefront from a teleseismic wave can be
approximated as a plane wave at the seismic station due to the large distance
from the hypocenter. When dealing with plane waves a ray description of the
waves is often useful. A ray represents the normal to the wavefront and is
pointing in direction of the propagation. For a plane wave the rays will be
parallel.

2.1.1 Rotation of data

The seismometer records data along the vertical Z, North-South N , and East-
WestE directions; the ZNE rotation system. However, the raw three-component
data are not aligned in the axis of the earthquake and the energy in form of
various wave types will be found in each of the recorded components.

There are two rotation systems commonly used. A 2D rotation system called
ZRT and 3D rotation system called LQT . The ZRT rotation is a 2D rotation
where the Z component is still pointing in same direction as in the original
ZNE recording, see figure 2.4. The two horizontal components N and E are
rotated into the radial R and tangential T components in the following wayRT

Z

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

EN
Z


where θ = 3π/2− ξ and ξ is the back azimuth. The back azimuth describes the
angle between the vector pointing from the seismic station to the earthquake
and the vector pointing from the seismic station to the north. The general

2.2 What is a receiver function? 11

rotation matrix for both ZRT and LQT is described in (Upadhyay, 2004, p.
197). The ZRT rotation is used in the forward model.

Figure 2.4: The rotation from ZNE to ZRT .
Modified from (Ekrem, 2002).

The 3D rotation LQT is
related to the ZRT system.
Beside being a 2D rotation
the coordinate system is also
tilted such that the radial
component accounts for an-
gle of incidence. In other
words, the LQT is given such
that L is in the direction of
the direct P-wave and con-
tains mainly P-wave energy.
The Q component is perpen-
dicular to both L and T and
contains mainly shearing mo-
tion, SV energy and finally
the T component is perpen-
dicular to both L and Q and
contains mainly SH energy.
This rotation should isolate
the energy from the different
wave types more clearly.

2.2 What is a receiver function?

When a teleseismic wave arrives at a seismic station it contain information
from the different parts of the path traveled. The recorded seismic data contains
information on the seismic source structure, the propagation through the mantle
and the local structure beneath the seismic station. Receiver function analysis
is a method to remove information from seismic data, regarding source structure
and the propagation through the mantle in order that the final data set, the
receiver function, only contains information about the local structure beneath
the seismic station.

One of the first articles dealing with receiver functions is (Phinney, 1964)
concerning P-waveform modeling on spectral responses from the crust. Phinney
did his work in the frequency domain but later in the year of 1979 Langston
introduced the receiver function modeling in the time domain, see (Langston,
1979). One of the most cited articles on receiver functions is (Ammon, 1991).

In the following below I will describe receiver function analysis. However this
description does not explain how synthetic and real receiver functions used in
the thesis is created. The creation of synthetic receiver functions are described
in section 4.1.1 and the receiver functions from the real world are described in
chapter 3.

12 Receiver functions

Figure 2.5: left: Simplified schematics of a teleseismic earthquake arriving at a seismic
station. Only the direct P-wave is shown and waves that end as S-waves at the seismic
station since the other P-waves are removed when creating the receiver function. Right:
The corresponding simplified receiver function showing the converted P-waves at layer
over a half space. Upper case letters indicate upgoing motion and lower case letters
indicate downward motion. h indicates the reflection at the surface h. E.g. PpPhs
means an upgoing P-wave that is reflected in surface and bounce downward to the
interface where it is reflected as a S-wave. Modified after (Ammon, 1991).

2.3 Calculating the receiver function

The underlying theory for creating synthetic seismograms is the linear filter
theory described in (Lay and Wallace, 1995). In this theory a seismogram can
be seen as the output from a sequence of linear filters on the signal from a seis-
mic source. These filters represent different processes such as the propagation
through the earth or the recording processes at the seismic station.

The output or filter response to an instantaneous impulse, a delta function,
is termed f(t) and the Fourier transform F (ω). The response of the filter to an
arbitrary input x(t) is called y(t) and can be written as

y(t) = f(t) ∗ x(t) ⇒ Y (ω) = F (ω)X(ω)

where Y (ω) is given in the frequency domain by the convolution theorem, see
appendix A.1. Here ∗ is the convolution operator, Y (ω) is the Fourier transform
of y(t) and X(ω) is the Fourier transform of x(t). If the signal encounters a
series of filters f1(t), . . . , fn(t) the Fourier transform of the output is

Y (ω) = F1(ω) · · ·Fn(ω)X(ω).

That is, the product of filters in frequency domain multiplied with the input
signal.

With this in place we can formally describe the receiver function follow-
ing (Ammon, 1991). The earth’s response to an incoming wave on a one-
dimensional velocity structure, illustrated in figure 2.5, can be written as two

2.3 Calculating the receiver function 13

components of motion. The vertical motion Z(t), and the radial motion R(t)
can be written as

R(t) =
n∑

k=0

rks(t− tk)

Z(t) =
n∑

k=0

zks(t− tk)

where s(t) is the source signal time function, zk and rk are the amplitudes of
k’th ray on each component, tk is the arrival time of the k’th ray at the surface
and ω is the radial frequency. The sums are over n rays with k = 0 being the
direct P-wave.

Figure 2.6: The vertical and radial re-
sponse to an incoming signal and the re-
sulting receiver function. Notice that the
PpPmp wave is not present in the receiver
function. From (Ammon, 1991).

Assuming that s(t− tk) is a delta
function the Fourier transforms can
be written as

R(ω) = r0

n∑
k=0

r̂ke
−iωtk

Z(ω) = z0

n∑
k=0

ẑke
−iωtk

where ẑk = zk
z0

is the amplitude of
the k’th ray normalized by the ampli-
tude of the first ray z0 which is the di-
rect P-wave and similarly for r̂k. The
deconvolution of the vertical motion
from the radial can be written as

H(ω) =
S(ω)R(ω)
S(ω)Z(ω)

=
R(ω)
Z(ω)

(2.1)

where S(ω) is the Fourier transform
of source signal S(ω) and Z(ω) are
assumed non-zero. This assumption
does not work for real data and the solution to the problem is described in
section 2.3.2. H(ω) is the Fourier transform of the radial receiver function h(t).
It also possible to construct a tangential receiver function by performing the
division in the frequency domain between tangential and vertical components
instead. In this thesis I will only focus on the radial receiver function and all
references to the receiver function will be to the radial receiver function.

2.3.1 An example with three arrivals

Consider a teleseismic wave arriving at the seismic station above a single layer.
Since the wave is teleseismic it can be seen as a plane wave. Following (Ammon,
1991) I will present a example where a plane wave arrives underneath a seismic
station. Considering only the first three distinct arrivals on the seismic station.

14 Receiver functions

The direct P-wave, a P-wave reflected at the interface and finally a P-wave that
have been converted into a S-wave at the interface. When a P-wave impinges on
a boundary to a layer with a different seismic velocity the wave will be reflected
and refracted in the boundary. If the layer is not fluid a secondary S-wave will
be generated, see (Lay and Wallace, 1995, p. 97). For teleseismic waves the
converted S-wave is much stronger in the horizontal component than in the
vertical component of the recorded data. This difference in strength of signal
in the horizontal and the vertical components form the core of the method.

The Fourier transform of the motion in the radial and vertical direction from
the three arrivals can be written as

R(ω) = r0

(
1 + r̂pe

−iωtp + r̂se
−iωts

)
(2.2)

Z(ω) = z0

(
1 + ẑpe

−iωtp + ẑse
−iωts

)
. (2.3)

Here the first term inside the parenthesis corresponds to the direct P-wave, the
second term corresponds to the reflected P-wave and the final term corresponds
to the S-wave. The main part of S-wave energy is given in the horizontal
component hence it is clear that, ẑs, the amplitude of the S-wave relative to the
amplitude of the direct P-wave, must be much less than one ẑs � 1. Using this
together with equation 2.1, 2.2 and 2.3 yields

H(ω) =
r0

z0

1 + r̂pe
−iωtp + r̂se

−iωts

1 + ẑpe−iωtp

For a plane wave arriving at a horizontal interface the rays are parallel and
r̂p = ẑp

H(ω) =
r0

z0

1 + ẑpe
−iωtp + r̂se

−iωts

1 + ẑpe−iωtp
(2.4)

Remembering that ẑp is the relative amplitude of the reflected P-wave to the
direct P-wave and is usually also small. By calculating the Taylor expansion of
the denominator

1
1 + ẑpe−iωtp

= 1−

(ẑpe−iωtp) +
(ẑpe−iωtp)2 −
(ẑpe−iωtp)3 + . . .

and inserting only the terms with a order less than one in equation 2.4

H(ω) =
r0

z0

(
1 + r̂se

−iωts + ẑpe
−iωtp

)
(1− ẑpe−iωtp)

ignoring the terms of order greater than zero in this multiplication yields

H(ω) =
r0

z0

(
1 + r̂se

−iωts
)

translated back into the time domain

h(t) =
r0

z0
(δ(t) + r̂sδ(t− tk))

2.4 The wavelet 15

From this equation it is clear that only the direct P-wave and the converted
S-wave are present in the receiver function. This was done for a single layer but
can be extended to any number of layers, (Ammon, 1991).

2.3.2 Deconvolution

Figure 2.7: The water level deconvolution method.
From (Ammon, 1997).

The deconvolution used
in equation 2.1 can be
troublesome in cases where
the denominator is very
small or zero. This
can be avoided by us-
ing a method known as
the water-level deconvo-
lution (Clayton and Wig-
gins, 1976). In the water-
level method the small
values in the denomina-
tor of equation 2.1 are re-
placed with a fraction of
the maximum value in the
denominator, see figure 2.7. Replacing small values by larger ones permits the
avoidance of division with small or zero numbers which reduces the effect of
small frequency elements on the receiver function and makes the process nu-
merical stable.

Remembering that the inverse of a complex number can be written as 1
Z =

Z∗

ZZ∗ where ∗ indicates the complex conjugated the receiver function can be
rewritten to

H(ω) =
R(ω)Z∗(ω)
Z(ω)Z∗(ω)

.

The water-level method substitutes this with

H(ω) =
R(ω)Z∗(ω)

φ(ω)
G(ω)

where

φ(ω) = max [Z(ω)Z∗(ω), cmax{Z(ω)Z∗(ω)}]

and

G(ω) = ξ exp
(
−ω2

4a2

)
. (2.5)

Here c sets the water level or minimum amplitude allowed in the denominator
, ξ is normalization constant and G(ω) is a Gaussian filter with a width of a
and chosen such that the width of the Gaussian match the width of the direct
P-wave as in (Langston, 1979, p. 4754).

16 Receiver functions

0 20 40 60 80 100
−0.5

0

0.5

1
Gauss

0 20 40 60 80 100
−0.5

0

0.5

1
Ricker

1600 1700 1800 1900 2000
−0.5

0

0.5

1
Station Nord autocorrlation

1600 1700 1800 1900 2000
−0.5

0

0.5

1
Aften stjerne Soe autocorrlation

Figure 2.8: Top left: A synthetic Gaussian wavelet. Top right : A synthetic Ricker
wavelet. Bottom left: The autocorrelation of the L component of the data from Station
Nord. Bottom right: The autocorrelation of the L component of the data from another
Greenland station called Aften Stjerne Sø.

2.4 The wavelet

Another important aspect of receiver functions are wavelets. Recorded seis-
mograms can be seen as the impulse response of the earth convoluted with a
seismic wavelet representing the initial movement at the source. As mentioned,
the earth’s impulse response is the signal that would have been recorded if the
seismic wavelet was a delta function. This can formally be written as

R(t) = w(t) ∗ e(t) + n(t).

where R(t) in this example is the radially recorded seismogram, w(t) is the
wavelet, e(t) is the impulse response of the earth, n(t) represents the noise and
∗ means convolution. Examples of wavelets can be seen in figure 2.8 and the
convolution of the impulse response with a wavelet is illustrated in figure 2.9.

The cross correlation of two signals is a measure of how well they resem-
ble one another. The autocorrelation is the cross correlation of a signal with
itself and by finding the autocorrelation of one of the three components of the
recorded seismic time series and assuming that the impulse response and noise
are not correlated it is possible to isolate the wavelet embedded in the seismo-
gram. This is done in figure 2.8 where the wavelet in the data from station
Nord and Aften Stjerne Sø are shown.

The general theory of convolution and wavelets is covered and richly illus-
trated in (Yilmaz and Doherty, 1987). In figure 2.8 four different wavelets are

2.4 The wavelet 17

Figure 2.9: A wavelet traveling through the earth will encounter several reflectors and
each of the these will sum up to the seismogram seen in the bottom right corner. This
also called the principle of superposition. From (Yilmaz and Doherty, 1987, p. 91).
On the left side the earth impulse function is displayed and on the right side the wavelet
is shown.

shown. There is two synthetically generated wavelets namely the Ricker and the
Gaussian wavelets beside to the wavelets embedded in the two Greenland data
sets from station Nord and Aften Stjerne Sø. Later in this thesis the difference
between the wavelets in the Greenland data sets and the Gaussian wavelet will
prove important when interpreting the results.

Chapter 3

Greenland data

In this chapter I will introduce the data used in this thesis. The synthetic data
is generated with the forward model provided by (Jacobsen, 2008). The real
world data are based on data from from station Nord from Northern Greenland
which was provided to me by Trine Dahl-Jensen, GEUS.

3.1 Retrieving the receiver function from observed
data

At a seismic measuring station the movement of the earth is recorded in three
components: vertical Z, North-South NS, and East-West EW . For a given
earthquake the location of the hypocenter can be determined by comparing the
difference in P and S-wave arrivals at several stations around the world. Using
this difference the related travel time can be used to triangulate the epicenter.
As mentioned earlier earthquakes with distance further than 1000 km away
are termed teleseismic. Teleseismic waves can be approximated by plane waves
arriving almost vertically beneath the seismic station.

Once data have been collected it is common to filter the data such that only
data with a frequency in a certain domain are allowed. The filtering is done
to exclude noise and only detect the earthquake data. As an example the data
from Station Nord, described below, is within a 2− 50Hz frequency range.

Once three component data are recorded at the seismic station a sequence
of operations on the data is needed to get a receiver function. The data should
be rotated in to the axes related to the energy directions of the earthquake
since this will ease the isolation of the energy related to the secondary waves,
see section 2.1.1. Furthermore the radial and vertical components will be de-
convoluted to remove information from the path through the earth up to the
subsurface layer and instrumentation information as described in chapter 2. In
the following I assume that the underlying structure is laterally homogeneous
since inclined layers would complicate the problem further.

3.1 Retrieving the receiver function from observed data 19

0 10 20 30

Delay Time (s)
0 10 20 30

Delay Time (s)

NOR2S50S_UPDATE/AZIMUTH

slowness:0
sum

0 90 180 270 360

BAZ (˚)

30 40 50 60 70 80 90 100

Dist (˚)

0 90 180 270 360

30 40 50 60 70 80 90 100

Figure 3.1: The stacked receiver function for Station Nord. The left figure shows the
angular distance to the earthquake in degrees and the back azimuth angle which provides
the longitudinal transverse directions of the incoming earthquake seen as a ray. The
right figure shows the related earthquake receiver functions.

3.1.1 Stacking

During the operation of a seismometer at a seismic station several earthquakes
will be recorded. Once teleseismic events have been identified the receiver func-
tions have to be calculated for the selected seismograms. For different tele-
seismic events the seismograms will be stacked as in figure 3.1. By stacking
the teleseismic events common elements will be enhanced through constructive
interference and random noise canceled out through destructive interferences
such that the signal to noise ratio will be enhanced.

20 Greenland data

2 5 0 k m

?

?

?

?

5 0 0 m

5 0 0 m

5 0 0 m

NORASS

5 5

6 0

6 2

6 4

6 0

6 6

6 8

7 0
6 5

7 2

7 0

7 4

7 5

8 0

7 8

8 5

9 0

9 5

8 0

7 6

6 0

6 2

6 4

2 0

6 6

6 8

7 0
1 5

7 2

1 0

7 4

5

0

7 8

5

1 0

1 5

8 0

7 6

5 0 4 5 4 0 3 5 3 0 2 5

9 0 9 5 8 5 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 4 0 3 5 3 0 2 5 2 0 1 5 1 0 5 0 5 1 0 1 5

O D P -S ite 6 4 5

H e lle fisk -1

Ik e rm iu t-1

K a n g a m iu t-1

N u k ik -1

N u k ik -2

O D P -S ite 9 1 4 -1 7
O D P -S ite 9 1 8

O D P -S ite 9 1 9

L in c o ln S e a

Ic e la n d

B a ffin
B a y

N o r t h A t la n t ic
O c e a n

D
a

v
is

 S
tr

a
it

L a b ra d o r
S e a

D
a nm

a r k
S

t r
a i t

Q a q o rto q

N u u k

S is im iu t

Ilu lissa t

U p e rn a v ik

Q a a n a a q

tiartSseraN

a
e

S
d

n
al

n
e

er
G

S c o re sb y su n d

A m m a ssa lik

Melville
Bugt

B
or

de
r

w
i t

h
C

a
n

a
da

E l le
smere Is land

G E U S

Figure 3.2: Simplified map of Greenland. Station NORD (NOR) is located in north-
ernmost part of Greenland.

3.2 Data from Greenland

I have tested my algorithms with data collected in the Northern Greenland
at Station Nord (NOR), see figure 3.2. The seismic stations in Greenland are
placed in areas with the least background noise away from ice flow and ice edges,
see (Dahl-Jensen et al., 2003).

To make the synthetic and real data resemble each other the best solution
would be to generate synthetic data using the wavelet embedded in the recorded
data. However the forward model used did not support anything except Gaus-
sian wavelets, so I had to determine the Gaussian wavelet that fitted the width

3.2 Data from Greenland 21

0 10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Station Nord

Time [s]

N
or

m
al

iz
ed

 a
m

pl
itu

de

(a)

240 250 260 270 280 290 300 310 320 330 340
−0.2

0

0.2

0.4

0.6

Samples [20Hz]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Gauss factor. Model: [8 30 8.20 6.45 4.80]. Data (black line) lifted 0.14. 150.00 evaluations

Station NORD
Best fit

0 0.5 1 1.5 2 2.5 3 3.5
0.1518

0.1518

0.1518

0.1518

0.1518

0.1518

Gaussian factor. Minimum at 1.04

R
M

S

(b)

Figure 3.3: a) The receiver functions from station Nord. b) 150 models width varying
Gaussian factors to determine the value at which the data fit was best.

of the embedded wavelet best. This was done by altering a Gaussian factor
in the forward model. The Gaussian factor determines the width of the Gaus-
sian bell that generates the wavelet convolved on the data and hereby also the
width of the initial P-arrival. I did this by searching for the Gaussian factor
that would make the observed and synthetic data fit best together.

The synthetic data was based on the best model Trine Dahl-Jensen found
in her analysis (Dahl-Jensen, 2008). The Gaussian factor was then variated (a
in equation 2.5). This was done for station Nord see figure 3.3(b). Afterwards,
the Gaussian factor was used in the algorithms when generating synthetic data.

Chapter 4

Inverse problems

One of the main objectives of this thesis is to examine how different optimization
schemes apply to the receiver function modeling problem. The problem at hand
is what normally is known as an inverse problem, where data are observed
and the problem is how to find the model parameters to recreate the data
synthetically.

Working with data from the real world can be a daunting task, since the
signal can be contaminated with all sorts of noise and instrumental influences.
Synthetic data generated from a known model has the advantage that the pro-
grammer always is aware that a global minimum exists. This is important for
validating algorithms but seldom represents the real world. When working with
data from the real world one will rarely be in a position where the mere exis-
tence of a global minimum is defined. Often several islands in the model space
will contain models that fit data equally well. Using a priori information about
the system can help to reduce the amount of possible models by bounding the
model within physical reasonable limits.

Generating synthetic data is the opposite process of doing inverse modeling
and is called a forward problem. In a forward problem the model and model
parameters are known and one wishes to generate data based on the model.
Programming a new forward model is beyond the scope of this thesis and for-
tunately I was kindly provided with a MATLAB based forward model from Bo
Holm Jacobsen, (Jacobsen, 2008).

4.1 Inverse problem theory

The majority of physics courses at the university teach how to solve forward
problems. An example of a forward problem would be to calculate the elec-
tromagnetic field in a given distance from an inhomogeneous conducting rod.
If every impurity was mapped and the current was known everywhere inside
the rod the electromagnetic field could be calculated uniquely for every point
outside the rod. A related inverse problem to this problem would be to deter-
mine the structure of the rod by measuring the electromagnetic field outside
the rod. Doing this would be a harder problem than the forward problem as

4.1 Inverse problem theory 23

0 10 20 30 40 50 60 70
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 a
m

pl
itu

de

Time [s]

Synthetic data − IASPEI91

5 10

0

10

20

30

40

50

60

P−velocity [km/s]

D
ep

th
 [k

m
]

Figure 4.1: A synthetically generated receiver function based on the reference earth
model IASPEI91, (Kennett and Engdahl, 1991). Left: The generated receiver function.
Right: The model is defined by two boundaries at a depth of 20 km and 35 km and three
P-wave velocities in each of the layers.

one could imagine several different rod structures that could produce the same
electromagnetic field. This is also known as non-uniqueness.

4.1.1 The forward problem

The forward model I will be using in this thesis is provided by Bo Holm Ja-
cobsen (Jacobsen, 2008) in the form of MATLAB code. The code is based
on the propagator matrix method described in (Kennett, 1983) and (Shearer,
1999). The propagator matrix is a method to calculate synthetic seismograms
from a plane wave propagating through a horizontally stratified underground
of homogeneous layers. The implementation of Bo Holm Jacobsen includes all
higher order multiples of reflected and refracted waves. The code generates two
synthetic seismograms in the vertical and radial direction and by deconvolu-
tion of the vertical from the radial component the radial receiver function is
constructed.

The input to the code was model parameters given as a vector with the
depth to the layers in km as the first Nlayer vector elements and Nlayer+1
corresponding P-wave velocities in km/s. The forward model then returns the
corresponding receiver function.

As an example the code was provided with a model consisting of 2 layers and
3 velocities based on the IASPEI91 model, see (Kennett and Engdahl, 1991).
The layer interfaces are located at 20 and 35 km. The P-velocity between the
surface and the first layer was 5.8 km/s, between the first and second layer the
speed was 6.5 km/s and after the second layer the speed was 8.04 km/s. The
resulting receiver function and the model are shown figure 4.1.

The time consumption of the forward algorithm depending on the number
of model parameters was found to be

t(n) = 0.0032 ∗ n+ 0.11

24 Inverse problems

Time per forward calculation as a function of the number of model parameters

20 40 60 80 100 120

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of model parameters

T
im

e
[s

]

Time measurement
Time=0.0032*number+0.11

Figure 4.2: The time consumption of the forward model to generate a receiver function
as a function of the number of model parameters.

where t(n) is the time consumption of the forward model to generate one receiver
function and n is the number of model parameters. The norm of the residual
was 0.0203 and t(n) is the average of 10 calculations. The relationship can be
seen in figure 4.2. The most important aspect of this relationship is the linearity
since the actual values depend on the speed of the computer used1.

Assumptions

Only providing the code with depth and P-wave velocity demands that certain
assumptions are made about the Vp/Vs relationship, density etc. I assume that
earth behaves as a Poisson solid such that the S-velocities can be related to the
P-velocities as

Vs =
Vp√

3
see (Shearer, 1999, p. 21). Furthermore, the density is assumed to be related
to the P-velocities by the following empiric relation called the Birch Law:

ρ [
kg
m3

] = 0.32 [
kg · s

m3 · km
] · Vp [

km
s

] + 770 [
kg
m3

];

see (Birch, 1964, p. 4380). Finally the results are filtered through a Gaussian
filter as defined in section 2.3.2 where the width of the filter can be controlled.

These assumption could be changed when calling the forward code which
would make it possible to perturb more variables than the depth and P-velocity

1The numbers were obtained on a computer with a Intel Core 2 Duo CPU P8600@2.40GHz.

4.1 Inverse problem theory 25

at the cost of a more complex model space. In my work I have decided only to
perturb the depth and velocity parameters.

4.1.2 The inverse problem

With a theoretical forward model one can easily calculate how a receiver func-
tion would appear under given circumstances. The problem at hand is however
not to find the receiver function but rather to determine the earth velocity
structure that generate the receiver function.

Consider a system which is fully described by Ndim parameters m, called
a model, belonging to a Ndim-dimensional space called the model space M.
The model space contains all possible parameter sets and each point in this
space is a valid description of the system. Given a model and a physical law
g, we can predict a set of data values dcal. g : M → D is the mathematical
description of the physical law mapping from the model spaceM into the data
space D. All possible realizations of data belong to D. The vector d is a data
set with Nd elements and belonging to the Nd a dimensional data space D. In
this terminology the forward problem can be written as

dcal = g(m) (4.1)

The inverse problem is to find a model, m that corresponds to some observed
data dobs and in theory this can be written as:

m = g−1(dobs). (4.2)

However, for most inverse problems it is not possible to create g−1. In general,
inversion of receiver functions is a highly non-linear problem2, see (Ammon
et al., 1990), and g−1 cannot be constructed. To find the solutions to the
problem one has to approach the problem in another way.

4.1.3 Probabilistic formulation

In a probabilistic formulation of a inverse problem a priori information about
the model can be described by a probability density, ρ(m). A priori information
in this sense is any information on a model given before the modeling begins. As
an example of a priori knowledge I use that fact that P-velocities above 7 km/s
at depths below 20km are unrealistic, see table 6.1, and prohibit my algorithm
from entering this domain of the model space. The a posteriori probability
density σ(m) over the model space can be seen as the complete solution to
the inverse problem as it describes all the information about the problem at
hand. σ(m) can be very complex and contain many local minima which makes
it hard to determine. In figure 4.3 a surface proportional to the a posteriori
probability density was created in the case of a five-dimensional model space,
where three of the parameters were fixed and two parameters were varied. The
pathologies well known in non-linear problems such as valleys, many separate

2The non-linearity of the problem has however been challenged in a recent article, (Jacobsen
and Svenningsen, 2008), see discussion in section 8.4.

26 Inverse problems

peaks, and troughs are seen. The a priori probability density can be related to
the a posteriori density through a Likelihood function, L(m), which evaluates
the fit between the data and the model. This connection is usually (Mosegaard
and Tarantola, 1995, p. 3) written as

σ(m) = kρ(m)L(m) (4.3)

where k is a normalization constant. In this context the a priori distribution
can be seen as a weight given to a model depending on how the model agrees
with the a priori information. In the case of the receiver functions in this thesis
there is no close-form expression to calculate σ(m) and the option is to draw
samples from σ(m).

Figure 4.3: This plot was created by
a Uniform sampling with 5000 samples
varying two model parameters in five-
dimensional model space and comparing the
resulting receiver function to the synthetic
data. The plot is further described in sec-
tion 6.2. The surface of this plot shows the
misfit value between the synthetic data set
and data generated by the algorithm. This
surface is proportional to the a posteriori
probability density.

The likelihood can have many
forms depending on the problem but
in my case I have used the following
definition, see (Mosegaard and Taran-
tola, 1995, p. 6)

L(m) = kl exp
(
−S(m)

s2

)
(4.4)

kl is a constant and s2 is the total
noise variance, which in my case is
the same for all of the N data val-
ues of the data vector, d. The mis-
fit function, S(m), is given as a sum
of the element-wise squared difference
between the data calculated from the
forward model dcal = g(m), and the
observed data dobs:

S(m) =
N∑

i=1

(
di

cal(m)− di
obs

)2 (4.5)

In the probabilistic description
the concept of selecting the single best
sample from the pool of created sam-
ples is meaningless. By drawing inde-
pendent samples from the a posteriori
probability density, it is possible to
analyze the samples to find the vari-
ance, mean or standard deviation by creating histograms. For each of the model
parameters a histogram of the values of model parameters found in the sam-
ples is generated. This is also called the marginal probability density and is
illustrated in 4.4.

The choice of model parameters in m for a given problem is very impor-
tant since the result of the inversion is dependent on the parameterization, see
(Menke, 1984, p. 143). In a recent article, (Jacobsen and Svenningsen, 2008),
this issue was addressed for receiver functions and is discussed in section 8.4.

4.1 Inverse problem theory 27

Metropolis. Synthetic data

P−velocity [km/s]

D
ep

th
 [k

m
]

3 4 5 6 7 8 9

10

20

30

40

50

60

(a)

Metropolis. Velocity histogram. Bin size 0.5 km/s. Layer detpth 2km.

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

P−velocity [km/s]

A
m

ou
nt

(b)

Figure 4.4: a) This figure shows the marginal probability velocity distribution for the
velocity structure of the synthetic IASPEI91 data set. For each kilometer in depth a
histogram velocity value of the samples drawn from σ was created. The histograms are
then stacked on top of each other and the contour map was created. The red areas
illustrate the peak of the histogram. b) The histogram for the layer with a depth of 2
km.

Chapter 5

Algorithms

In this chapter I shall introduce the algorithms used in the thesis. I have worked
with four different algorithms. A simple and unoptimized Uniform sampling
algorithm, a hybrid between the Gauss-Newton algorithm and the steepest de-
scent algorithm called the Levenberg-Marquardt algorithm (Levenberg, 1944,
Marquardt, 1963), the classic Metropolis algorithm (Metropolis et al., 1953) and
finally a newer algorithm called the Neighborhood search algorithm (Sambridge,
1998). The Uniform search, Neighborhood search and Metropolis algorithms
all belong to the Monte Carlo family of algorithms which use random numbers
to find solutions. I could have decided to investigate many other optimiza-
tion algorithms such as simulated annealing or genetic algorithms, see (Press
et al., 1992) and (Mosegaard and Sambridge, 2002), but with this selection I
think some of the most important characteristics from the different types of
algorithms are covered.

In figure 5.1 a number of algorithms have been classified by how well they
explore or exploit features of the model space. An exploring algorithm does
not utilize the information gathered from previous samples of the model space
whereas an exploiting algorithm will use the information drawn from previous
samples to create a new sample where it is most likely to find a better sample.
As it can be seen the Uniform search is highly exploring but not exploiting in
any sense. On the other hand, Levenberg-Marquardt, belonging to the group
called “Newton-Raphson and other gradient methods” is highly exploiting but
can easily get stuck in local minima. Both the Neighborhood search algorithm
and the Metropolis algorithm fits in somewhere in between exploitation and
exploration, since they can both be tweaked to perform highly exploring or
exploitative depending on the choice of control parameters in the algorithm.

5.1 The Monte Carlo Family

The Monte Carlo methods are a family of algorithms and methods which use
random numbers to solve a large variety of optimization problems. A famous
example of a Monte Carlo method is to determine the value of π by scattering
rice grains uniformly onto a circle inscribed in a square. The proportion of grains
inside the circle to the grains inside the square is the same as the proportion of

5.1 The Monte Carlo Family 29

Figure 5.1: As an example on how to characterize search/optimization algorithms
is to describe them either as mainly exploring or exploiting. From (Sambridge and
Mosegaard, 2002, p. 3-11).

areas:

ρ =
πr2

(2r)2
=
π

4

By counting the number of grains inside and outside the circle one can determine
the value of π/4 and hence π. This all depends on the randomness of the
scattering of the rice grains. If the rice grain scattering is skewed towards
hitting the circle, the ratio of grains will no longer be useful in determining π,
which implies the need for good random numbers. Another clarifying aspect of
this example is that the approximated value of π will come closer to the true
value of π as the number of rice grains increases.

The applications of computational Monte Carlo methods started just after
the Second World War where Neumann, Ulam and Fermi in 1949 used the
method to study nuclear reactions. In 1953 Metropolis published an article
(Metropolis et al., 1953) on how to use this method to calculate equations of
state on “fast electronic computing machines” – the predecessor to the modern
computer. This article was the birth of the what is now known as the Metropolis
algorithm and it was among the first algorithms ever to run on a computer. A
detailed historical description of development of the Monte Carlo method at
Los Alamos National laboratories in the fifties can be found in (Metropolis,
1987).

The example of determining π with rice grains illustrates that the foundation
of Monte Carlo method is random numbers. True random numbers based on
atmospheric noise or radioactive decay are hard to come by when large amounts
are needed. Thus, in the first years of the Monte Carlo methods the generation

30 Algorithms

of pseudo random numbers was also heavily researched. A pseudo random
number sequence is a sequence of numbers that appears to be random but can
be calculated by a small set of initial values known as the seed. Today all
modern operating systems have some sort of random number generator built
in. This is however not a tribute to the Monte Carlo method but instead
driven by the need of pseudo random numbers in cryptography. Generally the
pseudo random numbers generated are sufficient in most cases, as in mine, but
when true randoms are needed there are websites such as www.random.org that
provide true random numbers based on atmospheric noise.

5.2 Uniform sampling

In search of models that reconstructs the receiver function waveform the sim-
plest method to explore the model space is the Uniform sampling method also
known as exhaustive search or grid search, see (Mosegaard and Sambridge,
2002). There are many ways of implementing this algorithm. One of the meth-
ods is to design a grid to compartmentalize the parameter space and calculate
the misfit in each of the grid points. Depending on the grid spacing this will
provide a certain resolution in the parameter space which is controlled by the
programmer. This approach can give rise to problems if the grid spacing co-
incides with a feature in data having a frequency similar to the grid spacing.
Finding the best compromise between a fast and coarse grid and a slow but
fine grid can be a troublesome problem since the frequency of data features are
not known in advance and the algorithm does not exploit local information to
converge on the best solutions.

Another approach is to generate a predefined amount of random samples in
the parameter space. To achieve a certain mean distance between the samples
one can either calculate the mean distance as new samples are generated or just
calculate the amount of samples that would generate a certain mean distance
in the grid approach.

To generate a fixed number of models, i in a Ndim dimensional model space
each model, mi can be written as:

mi =
N∑

i=1

xiei (5.1)

where xi are the random numbers with appropriate units and ei are the unit
vectors along the i’th dimension of the model space

e1 = (1, 0, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0)

...

Generating the models is a very fast procedure on modern computers but the
evaluation of the corresponding misfit is usually much slower. Since the calcu-
lation of the misfit is directly proportional to the number of models the calcu-
lation time increases linearly with number of models. Considering a coarse grid

www.random.org

5.3 The Metropolis algorithm 31

of 10 points in each dimension of a N -dimensional model space the number of
model evaluations would be 10N , which makes this algorithm a bad choice for
high-dimensional problems.

In the computer industry Moore’s law, see (Moore Gordon, 1965), is a widely
cited and still useful generalization. It states that the number of transistors
that can be placed on a CPU will double every second year and the number
of transistors is somewhat proportional to the performance of the CPU. Even
though Moore’s law explains the advances done in the computer industry which
makes calculation that was previously unfeasible simple in a modern light it
cannot compensate for the drastic dependence on dimensionality that Uniform
search suffers from. The time it takes to create a model in a Ndim dimensional
space is determined only by the time it takes to create a forward calculation
Tforward.

TUniform = Tforward

But to sample a Ndim dimensional model space with a density high enough
to reveal data with a frequency of k peaks in the a posteriori distribution one
would need at least

TUniform,total = Tforward(2k)Ndim

samples. My implementation of the algorithm can be found in section B.1.

5.3 The Metropolis algorithm

The Metropolis algorithm is a so-called Markov Chain Monte Carlo method.
A Markov chain is a sequence of random models generated by a stochastic
process that follows the Markov property. A Markov chain is an example of
random walk. The Markov property states that the transition probability from
one model mn to another mn+1 depends only on the current model mn, see
(Walsh, 2004)

P (mn+1 = xn+1|m1 = x1, . . . ,mn = xn) = P (mn+1 = xn+1|mn = xn) (5.2)

where x is a point in the model space. The memory of the chain is very short
since all transitions to all future models are independent of previous models. For
a more detailed description of Markov chains see (Walsh, 2004). For a detailed
description of Metropolis algorithm see (Mosegaard and Tarantola, 1995) or
(Mosegaard and Sambridge, 2002).

The Metropolis algorithm is called an importance sampling algorithm mean-
ing that the Metropolis algorithm will sample a interesting areas of the model
space more than the uninteresting areas. Even though no one has coined the
term unimportance algorithm it is possible to imagine a method to sample the
posteriori probability distribution while not focusing on the interesting areas.
A random walker created in the following way does just this.

Imagine a probability density p over the model space and a large number M
such that

M ≥ max(p(m))

32 Algorithms

then p(m) could be sampled by accepting a new random model mn+1 succeeding
the previous model mn with the probability:

Paccept =
p(mn+1)

M

The accepted candidates are then samples from p, see (Mosegaard and Sam-
bridge, 2002, p. R34). The problem with this approach is that the acceptance
probability will be very small for most points in the model space and the algo-
rithm will move very slow.

Instead of comparing the probability with a large number the Metropolis
algorithm compares the probability of a current mcur model with the probabil-
ity of the new candidate model mnew. The algorithm is best describe by the
following steps

1. Select any initial point in the model space, mcur, where the misfit is not
zero.

2. Create a new point, mnew in the model space by selecting a random
dimension in the model space and adding or subtracting a random value
to the existing value. The only requirement is that the probability of
jumping from mi to mj is symmetrical, P (i→ j) = P (j → i).

3. Calculate the probability of accepting the new model:

Paccept =
{

1 if S(mnew) ≤ S(mcur)
exp

(
−∆S

s2

)
if S(mnew) > S(mcur)

This means that when the algorithm suggest a new model, mcur, the model will
be accepted immediately if the new model lowers the misfit. If the misfit is not
lowered the algorithm makes the transition with a probability of exp

(
−∆S

s2

)
.

When the Markov Chain has been running for a while all traces of the initial
model has been lost and the system would have settled down into an area of
the model space. The time it takes before the algorithm settles down is called
the “Burn-in” period and after this period the algorithm will start to sample
the distribution.

In figure 5.2 the Metropolis algorithm has been started at different initial
values further and further away from the global minimum in the synthetic data
set. The first two parameters of the five parameters in the model, representing
the depth parameters, were locked to the same values found in the IASPEI91
model. The remaining three velocity parameters of the synthetic model had
the values 5.8, 6.5 and 8.04 km/s respectively. The figure illustrates that the
convergence speed towards a stable region in the model space depends on the
starting point of the algorithm, m0 and some element of luck. The program
run with values furthest away from the synthetic data seems stuck in a local
minimum. If I had continued the simulation the algorithm would eventually
jump out of the minimum since the Metropolis algorithm has always a certain
probability to jump out of a local or even global minimum even though the
probability might be small.

5.4 The Neighborhood search algorithm 33

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of models

M
is

fit

Misfit as a function of the number of models in the Metropolis algorithm

Start speeds: 1, 1, 1
Start speeds: 2, 2, 2
Start speeds: 3, 3, 3
Start speeds: 4, 4, 4
Start speeds 5, 5, 5

Figure 5.2: The misfit as a function of the number of steps in the Metropolis algorithm
with synthetic data. The blue line appears to be stuck in a local minimum, but in time
it would most likely escape. Of the 5 parameters in the model two were constrained and
three were free but started with the parameters seen in the graph legend. The synthetic
data had the values: 5.8 6.5 8.04.

One of the problem with Metropolis algorithm is that the efficiency of the
algorithm depends on the size of the steps done by the random walker. There
is no universal method of determining the correct step size (Mosegaard and
Sambridge, 2002, p. R38) and usually the step sizes has to be calibrated such
that the algorithm accepts a reasonable amount of transitions. The percentage
of accepted step in all the possible steps is called the acceptance rate and should
usually be between 30-50%, see (Tarantola, 2005, p. 53). If the accept rate is
much lower, the algorithm will spend to much time evaluating models that will
not be accepted. A low accept rate is often the case if the step size is too big. In
the case that the accept rate is much larger than 50% the algorithm probably
has too small a step size and the algorithm will walk too slowly through the
model space. A acceptance rate of 30-50% should produce the balance between
too small and too large step sizes.

5.4 The Neighborhood search algorithm

In 1998 Malcolm Sambridge proposed a new algorithm to do optimization in
inversion problems, see (Sambridge, 1998, 1999). The method was named the
Neighborhood search algorithm. The algorithm is a member of the Monte
Carlo family of algorithms and in short the idea is to make an initial coarse
sampling of the models space, select the most promising regions, and sample

34 Algorithms

these regions more thoroughly in a manner such that the most heavily sampled
areas correspond to the areas where the models fits data best. The basic idea
of the algorithm is summarized by Sambridge

The philosophy behind the algorithm is that the misfit of each
of the previous models is representative of the region of space in its
neighborhood. (Sambridge, 1999, p. 484)

In the case that a given model really represents its neighborhood the algorithm
will work fine but if the model is unrepresentative of its neighborhood the
algorithm will get into trouble. This issue is discussed further section in 8.3.
One of the advantages of the algorithm is that it only relies on two control
parameters, namely the number of new samples per iterationNs and the number
of promising models to select for further inspection, Nr. By selecting a Ns/Nr

ratio close to 1 the algorithm will be exploring the model space and if the Ns/Nr

ratio is closer to 0 the algorithm will behave more exploiting, see (Sambridge,
1999, p. 12). An exploiting algorithm will utilize local information to select
better models in the vicinity. An exploring algorithm on the other hand seeks
to explore the whole space without much regard for locale areas of interest.

5.4.1 Voronoi cells

A key concept in the Neighborhood search algorithm is the Voronoi cell. A
Voronoi cell is defined as the region about a point p in space where all the
points in the region are closer to p than to any other point in the space.

Given a discrete set of points P the Voronoi cell belonging to a point p ∈ P
can be formulated more formally as

V or(p) = {x ∈M|dist(p,x) ≤ dist(q,x), ∀q ∈ P,q 6= p} .

In figure 5.3a a two-dimensional space with 10 points is shown where the thin
lines separate the Voronoi cells of the points.

5.4.2 The behavior of the Neighborhood search algorithm

The behavior of the Neighborhood search algorithm is very easy to illustrate
and in figure 5.3 the different stages are shown. At first the algorithm scatters
Ns=10 random points in the model space and the Voronoi cells are drawn, see
figure 5.3a. After 10 iterations of generating 10 new points inside the most
promising regions the Voronoi cell begin to concentrate on the regions with the
best models, see 5.3b. Finally after 1000 models have been generated the density
of models generated resembles the original distribution, seen in figure 5.3d where
the black areas are he most interesting. This behavior can be formulated in five
steps

1. Generate Ns initial random models in the model space.

2. Calculate the misfit for each of the models in the model space and find
the Nr models with the lowest misfit.

5.4 The Neighborhood search algorithm 35

Figure 5.3: The Neighborhood search algorithm samples the areas of interest more
heavily than other areas as the number of iterations increase. a) 10 points. b) 100
points, c) 1000 points. d) Contour of test function. The black areas represent minima.
From (Sambridge, 1999).

3. Determine the boundaries of the Voronoi cell belonging to each of the Nr

models.

4. Generate Ns/Nr new random models inside each of the Nr Voronoi cells.

5. Repeat from step 2 until the desired amount of models have been gener-
ated.

5.4.3 Exploring the Voronoi cell

The only technical obstacle in implementing the Neighborhood search algorithm
is generating new models inside of a Voronoi cell. To do this the boundaries of
the cells needs to be known in order to be sure that new models are within the
cell. There are many approaches to this problem and working on my thesis I
experimented with several approaches. Common for them all is that the new
models generated inside a Voronoi cell are constructed using the Gibbs sampler.
In the Gibbs sampler each iteration in a Ndim dimensional space consists of Ndim

substeps. Starting inside the Voronoi cell of the point m0 each of the substeps
will make a random change to one of theNdim model parameters in m0. After all

36 Algorithms

the substeps have been completed the algorithm will have generated a new point
independent of the previous point. The only limitation is that a new random
parameter value must be within boundaries of the Voronoi cell to which m0

belongs.

5.4.4 Sampling the cell using Qhull

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Number of models

T
im

e
in

 s
ec

on
ds

Time scaling with voronoin

Data
Fit

Figure 5.4: Scaling of the Voronoin implementa-
tion of Qhull in MATLAB. Data is fitted to expo-
nential function

One of the three great virtues
of a programmer beside im-
patience and hubris is lazi-
ness, (Wall et al., 2000). This
should be understood as lazi-
ness in regard to redoing work
already done once. Major sci-
entific programming environ-
ments as MATLAB, Mathe-
matica and GNU octave all
use the open source pro-
gram called Qhull, see (Bar-
ber et al., 1996), to com-
pute the Voronoi cells of given
number of points in space.

Even though implement-
ing Qhull in MATLAB is rela-
tively easy I quickly faced the
hubris of the quick solution to
my problem. Qhull returns
much more information than what is needed at the cost of extra computa-
tion time. To do the sampling I only needed information at the boundaries of
the cell in one dimension at a time. Qhull calculates the full convex hulls for all
cells in every dimension. This is not a problem as long as the number of models
is reasonably small but the computation time scales exponentially and hence
it is useless for larger models. In figure 5.4 the computation time is compared
to the number of models in the space. The computation follows a exponential
growth described by:

Computation time = 6.2 exp
#models

181

It should also be considered that every time a new point is added to the space
the Voronoi cell surrounding the new point will change and will need to be
recalculated. Furthermore, not all this information is needed as the algorithm
only needs to know the boundaries of the Voronoi cell of a point in question to
generate new models inside it.

5.4.5 Sampling the cell using discretized axis

The simplest method to find the boundaries of the Voronoi cell was proposed
by Sambridge in (Sambridge, 1999, p. 485). The idea is to discretize the model

5.4 The Neighborhood search algorithm 37

10 20 30 40
10

15

20

25

30

35

40

Parameter 1

P
ar

am
et

er
 2

15 20 25 30
0

5

10

15

20

25

D
is

ta
nc

e
to

 p
oi

nt

Parameter 1

Figure 5.5: On the left side the Voronoi diagram of a 2D space is shown. The Green
spot indicates the cell which is being sampled. The red dots on left shows how the
algorithm walks to locate the boundaries of the cell. On the right side the distances to
the other models are plotted as a function of the moving point. As an example the black
line to the right illustrates the distance to the point in middle of the Voronoi cell from
the each of the points on on red line in the left figure.

space axis into na points and determine the distance to all the samples for each
of the na points. The intersection between two Voronoi cells would then be
given by the point in the grid where a neighboring point belonged to another
Voronoi Cell.

I have implemented a slightly altered version of this method to ensure that
the boundaries would be better resolved. Instead of using a fixed amount of
points na, I made large steps, sorig, starting in the center Voronoi cell belonging
to the model mk along a given axis. For each step I calculated the distance to
all promising models in space and once the algorithm steps outside the Voronoi
cell belonging to mk the distance to mk would no longer be the smallest. My
implementation of the algorithm then takes a step backwards with the original
step size sorig to make sure we are still inside the Voronoi cell of mk. The
algorithm then divides the step size by 2 and steps forward again until the
algorithm determines that it had stepped outside the Voronoi cell of mk. The
algorithm will then repeat to diminish the step size until the step size gets
smaller than a limit given by the programmer. This approach ensures that the
boundary can be found with any resolution wanted. In figure 5.5 this approach
is illustrated and it can be seen how the distance to the other points increases
or decreases as the algorithm walks along an axis. My implementation can be
found in section B.3.

The problem with this simple approach is that the number of times it will
evaluate the distance to other models per cells, increases with the number of
dimensions and the number of models. In the case described in (Sambridge,
1999, p. 485) with a fixed amount evaluation points na along each axis and np

38 Algorithms

Figure 5.6: 2D illustration of the “refined” approach described in (Sambridge, 1999).
Notice that Sambridge uses Vk where I use mk to indicate that they are models.

models the time to create each independent sample is

Tsimple = Tforward + knanpN
2
dim,

where k is a constant, Tforward is the time it takes to do a forward model and
Ndim is the amount of dimension in the model space. Since my approach will
increase with na by a certain amount I would get a better resolution of the
boundary at the cost of a higher na and hence more evaluations.

5.4.6 Sampling the cell using exact intersections

In (Sambridge, 1999, p. 485) a more refined approach was introduced. Instead
of discretizing the model space this method calculates the exact intersection
point between the Voronoi cell and the nearest neighbor along a give dimension.

Imagine a 2D space bounded by a black box as the one seen surrounding
the Voronoi cells in figure 5.6 with Ns random models scattered around. Let
mk define the k’th model and the k’th Voronoi cell, Vk, be the one about mk.
For the sake of the argument say that our algorithm starts in the point A1. We

1It is also possible and maybe easier to start the algorithm in mk since this is the one point
known to be inside Voronoi cell. But using figure 5.6 I will use A in the description.

5.4 The Neighborhood search algorithm 39

wish to determine the intersection point between the k’th and j’th cells and this
point shall be called xj . Since xj is define as the point to which the distance
from both mj and mk equal we have:

‖mk − xj‖ = ‖mj − xj‖

In the i’th dimension of the model space this can be written as

d2
k + (mk,i − xj,i) = d2

j + (mj,i − xj,i)

where d2
k and d2

j are the perpendicular distances from mk and mj to a line
going through mk in dimension i. This expression can be solved to find the
exact intersection point xi,j

xj,i =
1
2

[
mk,i +mj,i +

d2
k − d2

j

mk,i −mj,i

]
(5.3)

This calculation has to be done for all models in the space and the two closest
points on each side of mk defining the boundaries of the Voronoi cell. An
important part of equation 5.3 is the perpendicular distance to a line in Ndim

dimensions. The distance from a line to a point in Ndim is not hard to calculate
but depending on the formulation of the problem the equation can be more less
complicated. In the major part of my thesis I used a geometrical approach to
calculate the distance from a line to a point in Ndim and even though the result
is valid the solution is long and complicated, see section A.3. It was only in the
last days of my thesis I realized a much simpler approach using a parametrized
version of the line, see section A.4. My implementation of the algorithm can
be found in section B.4. Even though this method is superior to the method
described in section 5.4.5 I ended up not using this method since I experienced
numerical problems with my implementation.

Since this approach unlike the method with the discretized axis does not
need to calculate the distance two times for each point of the grid this approach
is a factor naNdim faster. The time to create each independent sample is then

Texact = Tforward + k2npNdim,

where np is the amount of models in the space at the time (Sambridge, 1999).

5.4.7 Changing the misfit function

In (Sambridge, 2001, p. 393) two alternative misfit functions is described2.
By modifying the misfit function the programmer can alter the landscape the
algorithm sees. This can serve to make the algorithm center on areas that would
not usually be sampled.

One method would be to flatten the misfit function. If the misfit in a point
is below a threshold St the misfit value will altered to the threshold value. This
can formally be written as

2The misfit function I am using is defined in equation 4.5.

40 Algorithms

Sflat(m) = S(m) S(m) > St

Sflat(m) = St S(m) ≤ St

This definition makes the algorithm “see” good areas as flat areas and will
optimize the algorithm to explore the areas uniformly. This misfit function
could help the algorithm to behave by exploring on a local level.

Another alternative misfit function is to reverse the misfit function. Some-
times the most interesting feature of an region in the model space is the bound-
ary that defines the region in space. By creating a misfit function that returns
a very low value near the edge of an interesting area the algorithm is forced to
sample the edge. This can formally be written as

Sreversed(m) = S(m) S(m) > St

Sreversed(m) = St − S(m) S(m) ≤ St

In (Sambridge, 2001) it was concluded by numerical test that deploying these
alternative misfit functions depended highly on the problem and the dimensions
of the problem. I my thesis I have not deployed any of these alternatives.

5.5 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm, (Levenberg, 1944, Marquardt, 1963), is a
very popular algorithm in small and medium-sized optimization problems and
has proved itself to work very well in real world applications. The algorithm
combines the best of the Gauss-Newton algorithm and the gradient descent
algorithm. When the algorithm is far from a minimum it performs as the fast-
moving gradient descent method and when it is closer to a possible solution it
gradually turns to a more optimized quadratic form. The method is pseudo
second order since it estimates the second order derivatives only using first or-
der derivatives and functional evaluations. This estimation causes problems if
used on nonlinear problems but the Levenberg-Marquardt algorithm evaluates
the use of this estimation in each iteration and turns to the gradient descent
algorithm if the use of the estimation is not valid. Furthermore, since the cal-
culation of second order derivatives is normally computational expensive the
approximated second order approach makes the algorithm very fast. The fol-
lowing deviations are based on (Madsen et al., 2004).

The purpose of the algorithm is to find the minimum of the sum of squares
function S between observed data dobs and data generated by the forward model
g(m) = dcal.

S(dobs,m) =
Ndata∑
i=0

(
di

obs − gi (m)
)2 (5.4)

The algorithm starts at a point in the model space m0 and finds the next model
by taking a step from m0 to m1 = m0 + s0. In iteration the algorithm gets
closer to the minimum of S.

5.5 The Levenberg-Marquardt algorithm 41

5.5.1 Finding the minimum of S

The minimum of S is found by creating a sequence of steps sn converging at the
minimum. The key of the algorithm is to find the correct step size and direction
such that the algorithm will take optimal steps in the most beneficial direction.
The minimum of S is found at the point where the gradient of S with respect
to s is zero.

A linear approximation to g(m + s) is given by

g(m + s) ≈ g(m) + Js

and inspecting the conditions when the gradient of S is zero leads to

0 = ∇S(dobs,m + s)
≈ JT (dobs − g(m) + Js)
= JTJs + JT (dobs − g(m)) (5.5)

where J is the Jacobian of g. JTJ is also know as the as the approximated
Hessian Ĥ and the approximated Hessian include only first order derivatives
which makes Ĥ easy to compute. The full Hessian of S can be written as

(H(m))ij =
∂2S

∂mj∂mk
(m) =

N∑
i=1

(
∂gi

∂mj
(m)

∂gi

∂mk
(m) + gi(m)

∂2gi

∂mj∂mk
(m)

)
.

but as mentioned earlier computing the second derivative term gi(m) ∂2gi

∂mj∂mk (m)
is computational expensive. By discarding the second order derivative terms
and focusing on the first terms in this equation the approximate Hessian is thus

Ĥ = JTJ (5.6)

Remembering that the goal was to find the optimal step s in equation 5.5
yields

0 = JTJs + JT (dobs − g(m)) ⇒
s = −(Ĥ)−1JT (dobs − g(m))

Writing this in a iterative form highlights how the step from mn to mn+1 is
performed

mn+1 = mn + sn

= mn − Ĥ−1JT (dobs − g(mn)) . (5.7)

This is the quadratic approach also called the Gauss-Newtons method.
In the next section I will refer to the steepest decent method which is much

simpler than the quadratic approach. The steepest decent method is based on
the fact that a function will decrease the fastest in the direction of the negative
gradient of the function. More formally the algorithm in our context updates
as

mn+1 = mn − λJT (dobs − g(mn)

42 Algorithms

5.5.2 Levenberg’s contribution

The improvement made by Levenberg (Levenberg, 1944) was to change Ĥ−1 to
(Ĥ + λI)−1 such that a new model could be written as

mn+1 = mn − (Ĥ−1 + λI)−1JT (dobs − g(mn)) (5.8)

where I is the identity matrix and λ is a mixing factor. By controlling the mixing
factor the algorithm can be tuned from behaving as a quadratic approach

mn+1 = mn − (Ĥ−1)−1JT (dobs − g(mn)) λ << 1

to behaving as a steepest decent method

mn+1 = mn −
1
λ
JT (dobs − g(mn)) λ >> 1

In this way the algorithm can change the mixing factor to vary between the
less complicated steepest decent method in flat regions and turn to the more
advanced quadratic approximation near a minimum.

The tricky part of the algorithm is to determine the scaling factor λ at a
given time. This is usually done by the following method

1. Make an iteration as described in equation 5.8.

2. Evaluate the value of S for the new model mn+1.

(a) If S has increased discard the model mn+1 and increase λ by a factor
10. Return to (1).

(b) If S has decreased save the model mn+1 and decrease λ by a factor
10. Return to (1).

Described in another way: if the algorithm is not getting closer to a minimum it
should increase λ such that the algorithm behaves more as the steepest decent
method. If the new model is getting better the chances are that the algorithm
is getting closer to a minimum and λ should decrease such that the algorithm
behaves more like the quadratic approach.

5.5.3 Marquardt’s contribution

Marquardt (Marquardt, 1963) realized that with high values of λ the algo-
rithm is performing as the steepest decent method and do not benefit from
the information in the approximated Hessian. His contribution was that the
approximated second derivatives could still be useful. By replacing I with the
diagonal of the Hessian Ĥ

mn+1 = mn − (Ĥ + λdiagĤ)−1JT (dobs − g(mn))

In this way the algorithm can use the gradient information in the approximated
Hessian even when it is behaving as the steepest decent method and take larger
steps in the directions where the gradient is smaller.

5.5 The Levenberg-Marquardt algorithm 43

Even though the algorithm saves a lot of time by not calculating the full
Hessian the algorithm has the drawback that matrix inversion is needed which
is a slow process when the number of dimensions grow. The maximal number
of dimensions used in this thesis is 60 + 61 = 121 which doesn’t cause problems
with the Levenberg-Marquardt method but for larger problems with thousands
of dimensions this would be more troublesome.

The algorithm is one of the most common algorithms in optimization and
curve-fitting problems and I found that reimplementing this algorithm would
not be fruitful considering the three other algorithms also needed. I have used
the implementation built-in to MATLAB and my implementation can be found
in section B.5.

Chapter 6

Algorithm and plotting
considerations

Figure 6.1: The stacked plot of models il-
lustrates the behavior of the algorithm. Here
the Neighborhood search algorithm is shown
and it is clear how the algorithm jumps be-
tween different promising areas until the al-
gorithm settles on one area. The 2 top rows
are depth parameters and the 3 bottom rows
are velocity parameters. Each column rep-
resents a model and the models are gener-
ated such that new models are added to the
right. The colors show the parameter value,
red is high and blue is low.

In this chapter I will describe how the
algorithms were initialized and some
considerations regarding the plotting
of the data.

6.1 Plotting the results

For all the algorithms except Leven-
berg-Marquardt I have plotted the
models as the algorithm produces
them in a horizontally stacked plot.
The color represents the value and
each column is a model, see exam-
ples in figure 6.1 and 6.2. Depending
on the layer boundaries being fixed
or not the depth parameters are also
shown. This plotting method resem-
bles the “movie making method” de-
scribed in (Mosegaard and Tarantola,
1995, p. 12). It makes it easier to

show large numbers of models and identify common features within them. An-
other benefit from this kind of plot is that the inner workings of the algorithm
are exposed. As an example it is easy to see how the Neighborhood algorithm
alternates between different promising areas of the model space in figure 6.1.

For a given number of layers, Nlayer there will be 2Nlayer + 1 parameters.
The first Nlayer parameters define the depth in km and following Nlayer + 1
define the P-velocity km/s. The reason for the Nlayer + 1 velocity parameters
and not Nlayer is that the one more velocity parameter is needed to define the
velocity from the surface to the first interface.

In the Metropolis algorithm I have locked the depth parameters in the mod-
els and consequently the depth parameter will not be shown in the stacked plot.

6.1 Plotting the results 45

Figure 6.2: In the top figure the raw output from the Metropolis algorithm is shown.
In the bottom figure the result has been smoothed by a running mean of 5 km. In this
plot the layer boundaries are fixed 1 km apart and not shown. The rows show the 61
velocity parameters.

The stacked plot for the Metropolis algorithm shows the P-velocity as a func-
tion of depth. For all the other algorithms the depth parameter is not locked
and I will plot all the parameters in the stacked plot.

In the case of the Metropolis algorithm I will be using 60 fixed layer bound-
aries spaced 1 km apart and 61 velocity parameters. With such a large number
of layers the resulting velocity structure can be hard to interpret since the ve-
locity of layers can vary strongly between adjacent layers. Furthermore the
algorithm seems to prefer layers that alternates much in P-velocity from one
layer to another. To create more physically realistic models I have chosen to fil-
ter the velocities with running average of the 5 layers. In figure 6.2 the smoothed
and non-smoothed velocity structures are shown. The overall features in the
velocity structure are much clearer in the smoothed plot. The marginal proba-
bility plots used with the Metropolis algorithm are created from the smoothed
velocities. This has the effect that a sharp transition will become a more smooth

46 Algorithm and plotting considerations

(a) Seen from the side (b) Seen from the top

(c) Seen from the side (d) Seen from the top

Figure 6.3: 5000 random samples ±75% of the synthetic parameters created using
the Uniform search. While two parameters were varied the other three parameters were
locked. The surface shows the root mean square of the distance to the real synthetic
data. a,b) The two depth (named height in this plot) parameters varied. c,d) Two
velocity parameters varied.

transition and this should be kept in mind when interpreting the results.

6.2 An insight into the complexity of the problem

To illustrate the complexity of the misfit surface the algorithms are navigating
on I created some simple examples seen in figure 6.3. I created 5000 random
models in a five dimensional model space and varied two model parameters at
a time and bounded them to be within ±75% of the IASPEI91 model. The
other three parameters remained constant during the sampling. For each of the
models I calculated the misfit between the IASPEI91 model and the generated
models. The misfit values form the surface of the 2D planes shown in figure 6.3.

In figure 6.3(a) and 6.3(b) the two depth parameters have been perturbed.
The surface is intimidating from a optimization view since it is full of local

6.3 General description of the algorithms used on data 47

minima and valleys which could potentially trap the algorithms.
In figure 6.3(c) and 6.3(d) two of the three velocity parameters have been

perturbed. The surface appears more simple with a single minimum. Notice
that in the bottom of figure 6.3(d) there is some isolated peaks indicating that
the model is experiencing numerical difficulties when the value of one the ve-
locity parameters is close to 2 km/s.

6.3 General description of the algorithms used on
data

Not surprisingly the algorithms performed quite differently both in computing
time and in ability to fit the waveform. This meant that each algorithm had to
be fed with different starting conditions.

6.3.1 Uniform search

The Uniform search is a exclusively exploring algorithm and as described earlier
the number of samples needed to resolve the structures with a certain frequency
is highly depended on the dimensions of the model space. For a model with
two layer boundaries and three velocity parameters the model space have five
dimensions and to ensure a meager 10 models per dimension, the algorithm
would need to generate 105 models. To provide the same model density in 61
dimensions is a gargantuan task. On this background I have decided only to
use a 5-dimensional space with the Uniform search algorithm. Thus, I have
created 100,000 models and selected 25 with the lowest misfit to look for a
general pattern. I experimented with selecting a higher number of models but
the models were so different that it was hard to interpret the results. It should
also be noticed that the stacked plot for the Uniform search only shows the
first 1000 models. This was done since stacking 100000 random models next to
each other on a A4 paper would appear as a grey mass. By only showing 1000
models the random nature of the algorithm is visible.

The boundaries of the model space in which the algorithm could generate
models was defined as between 1 and 60 km in the depth parameters and be-
tween 3 and 9 km/s in the velocity parameters. The depth parameters were
generated randomly and afterwards sorted such that the highest values of depth
always was found in the bottom of the depth vector. This was done to ensure
that the algorithm would not feed the forward algorithm, a model where e.g.
the first layer boundary was deeper than the second one.

6.3.2 Metropolis

The Metropolis algorithm has almost no computational overhead beside solving
the forward problem for each generated model. This feature makes the algo-
rithm easy to use in a high dimensional space since the computation time of
one forward calculation is linear in the number of model parameters, see figure
4.2.

48 Algorithm and plotting considerations

4 4.5 5 5.5 6 6.5 7 7.5 8

0

10

20

30

40

50

60

P−velocity [km/s]

D
ep

th
 [k

m
]

Figure 6.4: The starting model used in the
Metropolis algorithm with 60 boundaries.

The starting model for the Metropo-
lis algorithm is an almost continuous
model with velocities starting at 4
km/s climbing slowly to 8 km/s, see
figure 6.4. To achieve an acceptance
rate of 30-60 % I perturbed the step
sizes in both velocity and depth until
the suitable size was found. I ended
up allowing the Metropolis algorithm
to take steps up to 1 km in the depth
parameter and 1 km/s in the velocity
parameter. The burn-in period varied
between data sets from around 2000
models in synthetic case to 5000-7000
models for the real data set. I gener-
ated approximately 13,000 models to

be sure that the algorithm was not beyond the burn-in period as well as to
have enough samples after the burn-in period to draw statically independent
samples.

Since the dimensions of the model space is not very important to the Metropo-
lis algorithm I have decided to use a model with 60 layer boundaries with fixed
depths which gives the Metropolis 61 velocity parameters to perturb. The
choice of 60 layers of 1 km each was based on the previous studies that indi-
cated the depth to the Moho at station Nord, would be in a depth of 30-40 km
(Dahl-Jensen et al., 2003, Dahl-Jensen, 2008). In the Metropolis algorithm the
acceptance probability was given as exp−∆S/s2

where s2 is the variance of the
noise. I have used a value of s = 0.1 on all data sets as an estimate of the noise
variance since it returned good results.

When I initially started to work with the Metropolis algorithm I had no
upper or lower bounds on values for the model parameters to take. It turned out
that the algorithm had no problem finding models that would fit the waveform
but the velocities in a single layer could be as high as 30 km/s, which is not
physical realizable. To circumvent this problem I bounded the velocities such
that they were inside a physically realistic range provided by Trine Dahl-Jensen,
(Dahl-Jensen, 2008)

Depth interval Maximal P-velocity
0 - 20 km 7.0 km/s
20 - 60 km 8.5 km/s

Table 6.1: Realistic range of P-velocities.

Bounding the velocity values is an example of using a priori knowledge of
the system to constrain the algorithm.

6.3 General description of the algorithms used on data 49

6.3.3 Neighborhood search

In my implementation I have used the method described in section 5.4.5. The
Neighborhood search algorithm also encountered problems with a large number
of model parameters. This is in part due to the implementation but mostly due
to the problem of finding the boundaries of the Voronoi cells which increased
rapidly with the amount of dimensions as well as the number of models. Prefer-
ably I would have used the same model with 60 layer boundaries, as for the
Metropolis algorithm, but since the computation time was very high1 I decided
to use a smaller model. By inspecting the result from using the Metropolis al-
gorithm with 60 layer boundaries I found that the overall structure for station
Nord could be approximated with a model with three layer boundaries equal to
a 7 dimensional model space.

The most important algorithm parameters in the Neighborhood algorithm
is the number of models generated at each iteration Ns and Nr describing the
number of Voronoi cells to focus on. In (Sambridge, 1999) the author applied
the algorithm on a receiver function problem with, Ns = 20 and Nr = 2,
generating 10,000 models in total in a 24-dimensional space. I experimented
with the same values of Ns and Nr on the synthetic data set and found that
the algorithm seemed to get stuck in the wrong minimum. This is discussed
further in section 8.3. For this reason I selected Ns = 250 and Nr = 25 with
40 iterations. I chose 40 iterations by trial and error to find the number of
iterations where the Voronoi cells had become so small that the misfit was not
changing considerably.

The space in which the models could be generated was bounded in the depth
parameters between 10 and 40 km and in the velocity parameters between 3
and 9 km/s.

6.3.4 Levenberg-Marquardt

The Levenberg-Marquardt algorithm was started with the same start model as
for the Metropolis algorithm, see figure 6.4. The depth parameters were also
locked 1 km apart. The algorithm was allowed to evaluate the forward problem
20,000 times and since the algorithm had found the gradients in 61 dimensions
which amounts to around 320 iterations. I stopped the algorithm at 20,000
models after ensuring that the misfit seemed to have stabilized. However, the
algorithm would also stop if the misfit could not be lowered further.

1The Neighborhood algorithm took 13 hours to generate 10,000 models in 7 dimensional
space where the time taken to solve the forward problem 10,000 times was 45 minutes.

Chapter 7

Results

In this chapter I shall present the results from four different algorithms on both
synthetic and real data.

7.1 Description of the plots

The plots are very heavy in information but I have aimed to create the figures
with a single design for all the four algorithms to the extent it was possible. In
a figure such as figure 7.1(a) the top figure shows the waveform of the receiver
function and the selected models are shown. In the middle to the left side the
generated models are shown stacked horizontally together. In the bottom to the
left side the misfit is shown as a function of the number of generated models.
Finally on the bottom right side the selected generated models are depicted
with velocity as a function of depth.

For the Metropolis algorithm the marginal probability density is shown in-
stead of the stair case velocity-depth plot. For the Levenberg-Marquardt algo-
rithm both a smoothed and non-smoothed version of the generated models are
shown. The stacked plot is not present for the Levenberg-Marquardt algorithm
since I could not extract the individual models as they were generated from the
built-in MATLAB function.

7.2 Synthetic data

As described earlier the synthetic data created with the forward model are
based on the IASPEI91 earth model shown in figure 4.1. This implies that the
wavelet used to create the synthetic data set based on IASPEI91, is the same
as the wavelets used in the algorithm when creating new models and thus it is
reasonable to expect good fit.

7.2.1 Uniform search

From the 100,000 models generated the 25 models with the lowest misfit were
selected and is seen in figure 7.1(a). These 25 models seem to have fit the
waveform nicely. But a common feature seems to be that the depth to the first

7.2 Synthetic data 51

0 10 20 30 40 50 60 70
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Synthetic data
The 25 best models

Model number. 1000 models shown.

P
ar

am
et

er
 n

r.

200 400 600 800 1000

1
2
3
4
5

10

20

30

0 2 4 6 8 10

x 10
4

0

50

100

150

Model number

M
is

fit
Uniform search. 100000 random models.

0 5 10

0

10

20

30

40

50

60
D

ep
th

 [k
m

]
P−velocity [km/s]

(a) Uniform search

0 10 20 30 40 50 60 70
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Synthetic
100 random models after burn−in.

Model number. Colorbar shows P−speed [km/s].

D
ep

th
 [k

m
]

2000 4000 6000 8000 10000 12000

20

40

60
4

5

6

7

P−velocity [km/s]

D
ep

th
 [k

m
]

3 4 5 6 7 8 9

10

20

30

40

50

60

Metropolis. Acceptrate=51.9%, First layer depth: 1km, Layer step size: 1km, Layers: 60

0 2000 4000 6000 8000 10000 12000
0

0.2
0.4
0.6
0.8

Model number. 13689 models in total.

M
is

fit

(b) Metropolis

Figure 7.1: The result obtained through the Uniform search and the Metropolis algo-
rithm on the synthetic data set. See description in section 7.1.

52 Results

0 10 20 30 40 50 60 70
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Synthetic data
The last Ns models

P
ar

am
et

er
 n

r.

2000 4000 6000 8000 10000

1
2
3
4
5

10

20

30

0 2000 4000 6000 8000 10000 12000
0

5

10

15

Model number

M
is

fit

Neighborhood. Itt: 40 Ns: 250 Nr: 25 Layers: 2

0 2 4 6 8

0

10

20

30

40

50

60

D
ep

th
 [k

m
]

P−velocity [km/s]

(a) Neighborhood search

0 10 20 30 40 50 60 70
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 a
m

pl
itu

de

Time [s]

Synthetic data
Final model

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

Model number.

M
is

fit

0 5 10

0

10

20

30

40

50

60

70

P−velocity [km/s]

D
ep

th
 [k

m
]

Levenberg−Marquardt. Itt.: 160. Models: 20032. Final Misfit: 1.6204e−12

0 5 10

0

10

20

30

40

50

60

70

P−velocity [km/s] smooth

D
ep

th
 [k

m
]

(b) Levenberg-Marquardt

Figure 7.2: The result obtained through the Neighborhood search and Levenberg-
Marquardt algorithms on the synthetic data set.

7.3 Data from station Nord 53

boundary is a bit lower than the true model. As expected the misfit and the
stacked plot varies wildly.

7.2.2 Metropolis

In figure 7.1(b) the Metropolis has generated approximately 13,000 models with
a burn-in period of around 2000 models. The depth to the first of two layers
seems to have been well resolved while the transition to the second layer is more
uncertain. The deepest boundary at 35 km is the boundary with the highest
velocity change and especially this boundary is quite distinct. The two layers
are clearly visible when inspecting the marginal probability plot, located in the
lower right corner. The center of the marginal probability plot also follows three
straight lines as the ones found in the IASPEI91 model, figure 4.1.

7.2.3 Neighborhood search

The Neighborhood algorithm was successful in determining the depths to the
two layers and the first two velocity parameters in figure 7.2(a). The last
velocity parameter varied a bit but this might be due to a numerical problem
near the border of the model space. Overall the Neighborhood algorithm did a
convincing job in reconstructing the waveform and the model parameters.

7.2.4 Levenberg-Marquardt

In figure 7.2(b) the Levenberg-Marquardt algorithm did a surprisingly good
job in reconstructing the synthetic data considering the apparent complicated
surface of the misfit function, see figure 6.3(a). The algorithm came very close
to the true velocity structure in only 20 iterations. Inspecting the model and
the underlying data, it is clear that beside a single layer being slightly to low
at a depth of 4 km the fit is perfect. The effect of smoothing the data is very
clear in this figure as well. The transitions between layers are done gradually
in the smoothed model.

7.3 Data from station Nord

A common feature for all the results obtained for station Nord is a low-velocity
layer in a depth of 10 and 20 km. This is not a feature found in other studies
(Dahl-Jensen, 2008) and is most likely an artifact of the difference between the
wavelet in the data and the wavelet in the forward model. This is discussed
further in chapter 8.

7.3.1 Uniform search

The 25 best models in figure 7.3(a) seems to agree on a boundary in the depth
of approximately 10 km corresponding to the lower velocity layer mentioned
earlier. This apparent low velocity layer is very clear in the Metropolis algorithm
where it is the most dominating feature. Since the Uniform search only has two
depth parameters the models with the lowest misfit are the models that fit the

54 Results

0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

No
rm

al
ize

d
am

pl
itu

de

Station NORD
The 25 best models

Model number. 1000 models shown.

Pa
ra

m
et

er
 n

r.

200 400 600 800 1000

1
2
3
4
5 10

20
30
40
50

0 2 4 6 8 10
x 104

0

50

100

Model number

M
isf

it

Uniform search. 100000 random models.

0 5 10

0

10

20

30

40

50

60

De
pt

h
[k

m
]

P−velocity [km/s]

(a) Uniform search

0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Station NORD
100 random models after burn−in.

Model number. Colorbar shows P−speed [km/s].

D
ep

th
 [k

m
]

2000 4000 6000 8000 10000 12000

20

40

60
4

5

6

7

P−velocity [km/s]

D
ep

th
 [k

m
]

3 4 5 6 7 8 9

10

20

30

40

50

60

Metropolis. Acceptrate=48.3%, First layer depth: 1km, Layer step size: 1km, Layers: 60

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

Model number. 13689 models in total.

M
is

fit

(b) Metropolis

Figure 7.3: The result obtained through the Uniform search and the Metropolis algo-
rithm on data collected at Station Nord.

7.3 Data from station Nord 55

0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Station NORD
The last Ns models

P
ar

am
et

er
 n

r.

2000 4000 6000 8000 10000

2

4

6 10

20

30

0 2000 4000 6000 8000 10000 12000
0

10

20

Model number

M
is

fit
Neighborhood. Itt: 40 Ns: 250 Nr: 25 Layers: 3

4 6

0

10

20

30

40

50

60
D

ep
th

 [k
m

]
P−velocity [km/s]

(a) Neighborhood search

0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 a
m

pl
itu

de

Time [s]

Station NORD
Final model

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

Model number.

M
is

fit

0 10 20

0

10

20

30

40

50

60

70

P−velocity [km/s]

D
ep

th
 [k

m
]

Levenberg−Marquardt. Itt.: 165. Models: 10851. Final Misfit: 0.32367

0 5 10

0

10

20

30

40

50

60

70

P−velocity [km/s] smooth

D
ep

th
 [k

m
]

(b) Levenberg-Marquardt

Figure 7.4: The result obtained through the Neighborhood search and Levenberg-
Marquardt algorithms on data from station Nord.

56 Results

low velocity layer. The wave does not reconstruct the multiples of the waves
seen around 30 second and the models estimate an unrealistic low velocity for
everything beneath 10 km. All in all the algorithm did not do a convincing job.

7.3.2 Metropolis

As in the synthetic data section the samples generated by the Metropolis al-
gorithm in figure 7.3(b) fits the waveform convincingly. However as mentioned
in the beginning of this section the apparent low velocity layer between 10 and
20 km is most likely not existing in the real world. This illustrates that even
though it is possible to fit the waveform using a Gaussian wavelet the resulting
models show features arising from this problem and not from the underground
structure it self.

After the first 20 layers the velocity is almost constantly 5 km/s down to
around 29 km where the velocity increases to 5.5 km/s and remains at this
level until 35-37 km where the velocity changes to gradually to 6 km/s. The
velocity remains at 6 km/s until the approximately 55 km where it gradually
drops to 5 km/s. This last drop is strange and most likely also an artifact of
the wavelet problem or noise in the data. The velocities are lower than what
would be expected which could also be related to the wavelet problem.

7.3.3 Neighborhood search

I tuned the parameters of the model with a Ns/Nr ratio of 10 with Ns = 250
and Nr = 50. I have experimented other combinations of Ns and Nr including
Ns = 20 and Nr = 2 (Sambridge, 2001) but without satisfying results.

The result of the algorithm is shown in figure 7.4(a). The most impor-
tant and disturbing element is the model on the right side. It is clear that
the algorithm has chosen a model that is not realistic in any sense. The first
layer boundary depth is at 31 km, the second at 14 km, the third at 10 km.
Even though the forward model is able to calculate the corresponding receiver
function the result is not realistic. This is further discussed in chapter 8.

7.3.4 Levenberg-Marquardt

In figure 7.4(b) the Levenberg-Marquardt algorithm has managed to fit the
waveform surprisingly well. Unfortunately this does not mean that the model
that fit the data is very realistic. At around 10 km the velocity is very low
corresponding to the low velocity layer described earlier. The most distinct
features are the very fast layers at 25 and 30 km. The velocity in these layers are
well outside the range described in table 6.1. In the MATLAB implementation
of the algorithm it is not possible to impose bounds on the values, so this
behavior could not have been avoided. Even the resulting model is not realistic,
I do believe that the result is an insight into the structure. I believe that the
boundary around 25 km is the lower boundary of the artificial low velocity layer
and it could be speculated that the boundary around 30 km could represent the
Moho.

Chapter 8

Discussion

In this chapter I will discuss the results obtained and the possible pitfalls and
problems that should be considered in relation to both the workings of the
algorithm and the data.

8.1 Comparison of algorithm performance on syn-
thetic data

All the algorithms were successful in fitting synthetic data. Not surprisingly the
Uniform search did not fit the data perfectly but came close to the overall result.
Using the Metropolis algorithm three distinct layers were also visible both in the
marginal probability plot and the stacked plot. The Neighborhood search was
much more successful than Uniform search and succeeded pinpointing four of the
five model parameters. I was surprised to see how well the Leveberg-Marquardt
algorithm did since I would not initially have guessed that a gradient-based
method would do so well in such a complex environment, see figure 6.3.

Based on these results it is clear that the Uniform search is not really a vi-
able algorithm even for synthetic data. Considering that the algorithm did not
find better models among 100,000 models, underlines the need for optimization.
Using the Metropolis algorithm to sample the a posterior probability distribu-
tion provides a very interesting marginal probability plot. This plot gives an
estimate of how well the different structures are resolved. The Neighborhood
algorithm could be seen as an attractive algorithm when expecting the results
but the computational overhead makes this algorithm the slowest of them all.
The Levenberg-Marquardt algorithm was both accurate and fast since the com-
putation of first order derivatives is simple and the computational time was
almost the same as the time to solve the forward problem.

8.2 The wavelet problem

Applying the algorithm on the real world data set was not surprisingly less
successful than for the synthetic data. As I have already mentioned this was
most likely due to the problem with the wavelets.

58 Discussion

10 11 12 13 14 15 16 17 18 19 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

N
or

m
al

iz
ed

 a
m

pl
itu

de

(a) Gaussian wavelet and station NORD data.

 0.0 10.0 20.0 30.0

1: NGR DATA Q

2: T42_GAUSS Q

3: T42_RICKER Q

4: T42_L Q

NGR models with different wavelets

(b) Effect of different wavelets

Figure 8.1: a) The black line is the data from Station NORD and the red lines are
50 models generated using the Metropolis algorithm. The red synthetically generated
models uses a Gaussian wavelet. b) 1: Shows the data recorded in Greenland, station
NGR. 2: Data fitted with a Gaussian wavelet. 3: Data fitted with a Ricker Wavelet. 4:
The wavelet contained in the data. For 2-4 the same depth-model was used and only
the wavelet was changed. b) From (Dahl-Jensen, 2008).

In figure 8.1(b) data from station Nord GRIP in Greenland is fitted using
the same model with varying wavelets (Dahl-Jensen, 2008). As it can be seen
the data fit depends heavily on the used wavelet. The Gaussian, Ricker and
autocorrelated wavelets can be seen in their raw form in figure 2.8.

The forward model used in this thesis applied a Gaussian wavelet and even
though it would have been interesting to see the effect of using another wavelet
it was beyond the scope of this thesis to change the wavelet in the forward code.

In figure 8.1(a) data from station Nord and models generated synthetically
using the Metropolis algorithm are shown together. Inspecting the fit at 13.5
and 16 seconds it is clear that a Gaussian wavelet have problems fitting the data
since the original wavelet does not have these dips before the major peak. The

8.3 The importance of Ns in the Neighborhood search algorithm 59

effect of this problem to the data fits are unknown but since the low velocity
layer found at station Nord is not found in other surveys (Dahl-Jensen, 2008)
it is reasonable to expect that the low velocity layer is an effect of the wavelet
problem.

Bearing this problem in mind, it is understandable that all the algorithms
had problems fitting the waveform and hence generate reasonable models. The
Uniform search failed in creating any meaningful results since it used the depth
parameters to fit the low velocity layer. Overall the Metropolis algorithm pre-
dicted very small velocities and found the low velocity layer as well. However it
was possible to find a increase in velocity around 30 km and again at 35. This
could be interpreted as the Moho as it is expected to be found in this depth
and is defined as abrupt increase in seismic velocity. The Levenberg-Marquardt
algorithm displayed results similar to the Metropolis algorithm and found the
low velocity layer as well as two very fast layers. The layer at 25 km could be
described as the lower boundary of the low velocity layer and the other fast
layer at 30 km could be the Moho discontinuity.

Ultimately the wavelet problem is influencing all the algorithms and all
the generated models and it is hard to tell whether or not the depth of the
layer boundaries and the corresponding velocity changes is comparable to other
studies.

The Neighborhood algorithm did not create useful results with the data set
from Greenland. Unfortunately I discovered this problem very late due to an
erroneous plotting script. The problem was that the forward algorithm could
easily accept models where the layer boundaries were not sorted such that the
deepest layer could be the first in the model vector. The receiver function
calculated from such a defect model could appear reasonable but only when
inspecting the model parameters themselves it was clear that these were not
acceptable models. Even though I am glad to have found this error I did so
in the last days before my deadline and managed to solve the problem for all
algorithms but the Neighborhood algorithm. The fix would not take more than
a few hours but since I needed to generate (13 hours) and interpret the results I
could not manage to do so within the time limit. If I had more time the solution
would have been to lock the depth parameters with a reasonable spacing such as
10 or 5 km apart and only let the Neighborhood algorithm perturb the velocity
parameters.

8.3 The importance of Ns in the Neighborhood search
algorithm

In figure 6.3 cross-sections of the model space reveals a highly irregular land-
scape. When starting the Neighborhood algorithm Ns random models are
placed in the model space and the misfit is evaluated for each of the models. In
the first iteration the algorithm samples the Voronoi cells belonging to the Nr

models with the lowest misfit. This implies that the Neighborhood algorithm
eliminates Ns −Nr cells already in the first iteration. This behavior makes the
algorithm concentrate on the regions in the model space it believes is the most

60 Discussion

(a) First iteration (b) Areas eliminated

Figure 8.2: a) A contour plot of the function Z = sin(X) + sin(Y) and Ns = 6
randomly generated points. The white areas are peaks and black areas are holes. b)
Nr = 2 and 4 of the regions will be discarded.

interesting at a very early stage where the Voronoi cells are still very large, see
figure 5.3. It is quite possible that the algorithm will miss interesting regions if
Ns is too low. As an example consider a 2D space with four holes we would like
to map, see figure 8.2. If Ns = 6 and Nr = 2 the algorithm would divide the
space into 6 Voronoi cells, figure 8.2(a), and generate Ns/Nr = 3 models inside
the two best Voronoi cells. The four other regions will be discarded.

As quoted in chapter 5 the philosophy behind the algorithm is that the
misfit of each of the previous models is representative of the region of space in
its neighborhood. One can never be sure that a neighborhood really represents
every model inside. If the misfit varies highly as seen in figure 6.3 it would be
necessary with a higher value of Ns to be sure that the Ns Voronoi cells would
represent their neighborhood.

The Nyquist rate is the minimum sampling rate needed to ensure that a
signal with frequency of fpeaks is not aliased

fnyquist = 2fpeaks,

see (Lay and Wallace, 1995). In figure 6.3a at least three peaks per dimension
can be seen and as such the minimum amount of samples per dimension must
be 2 · 3. In five dimensions this is (2 · 3)5 = 7776 samples. So to ensure that
the Neighborhood algorithm does not eliminate an interesting area Ns should
be at least 7776. Since I have chosen Ns = 250 it is clear that the there will
a high risk of that the Voronoi cells will not represent the regions they define.
The estimate of three peaks were based on existing survey of the misfit surface
for the synthetic data. For real data such a survey does not exist and either a
survey should be done before the Neighborhood algorithm was applied to find
the correct value of Ns or Ns should be as high as if the initial sampling was a
Uniform sampling. In either case this renders the algorithm a doubtful choice.

8.4 A non-linear problem 61

(a) Delay time changes. (b) Delay time conserved.

Figure 8.3: Left: a) Two almost identical velocity models with one having a slightly
lower velocity in one of the layers. b) The two corresponding receiver functions. c) The
difference between the two receiver functions. Right: The same figures as to the left but
here the layer depths have changed as wells as the velocity such that the delay time is
conserved. It is seen that the change in velocity to the left in one layer shifts all the
peaks of all other layers. From (Jacobsen and Svenningsen, 2008, p. 1759).

The inventor of the algorithm Malcolm Sambridge is well aware of the prob-
lem and in an article from 2001, (Sambridge, 2001, p. 392) he presents an
empirical formula for the number of samples, s, needed to fill up a space as
function of the number of dimension Ndim

s(Ndim) ≈ N3.5
dim

This underlines the problems that the algorithm will experience in high-dimensional
spaces.

8.4 A non-linear problem

The inverse problem of finding the models corresponding to a given waveform
is usually regarded as highly non-linear problem. This is mostly based on an
article from 1990 (Ammon et al., 1990) which addresses this problem. But
very recently in 2008 (Jacobsen and Svenningsen, 2008) the non-linearity of
inversion has been challenged. In the article the non-linearity of the problem is
seen as a product of a unfavorable model parameterization. In the 2008 article
the results from (Ammon et al., 1990) are compared with results using a new
parameterization. Instead of parameterizing the problem separately in velocity
and depth as in (Ammon et al., 1990) Jacobsen and Svenningsen generated a
quasi-continuous model parameterized in delay time. This is done by changing
the depth layer (thickness) together with the layer velocity such that the delay
time of the other peaks are conserved. In the article the two parametrizations
were compared, see figure 8.3, using two almost identical velocity models with
one of the models having a slightly lower velocity in one of the layers. As seen

62 Discussion

in the figure a small change in velocity in one layer affects not only the first
peak but shifts all later peaks which makes the problem highly non-linear.

For all the algorithms changing the depth and velocity parameters indepen-
dently the problem would appear as a highly non-linear problem. This is the
case for all my algorithms beside the Levenberg-Marquardt method. In the
Levenberg-Marquardt method the algorithm performs steps in the optimal di-
rections in the multidimensional space. Knowing the gradients in all directions
it is reasonable to believe that the algorithm can see, that a step changing both
depth and velocity together minimizes the problem better than only changing
one type of parameter per iteration.

8.5 Removing the P-pulse from the receiver function

Inspecting the receiver function it is obvious that the direct P-wave is the dom-
inant spike in the data. And it has been speculated that removing the pulse
would make the problem easier to solve. In an article from 2003 (Reading et al.,
2003) this idea of removing the direct P-pulse from the receiver function was
proposed. But later (Svenningsen and Jacobsen, 2004) it was shown that the
difference between the usual LQT rotation, see section 2.1.1, which retains the
P-pulse, and the newly proposed rotation without the P-pulse was very small
in theory and it was argued that the effect would be absent in practice.

Chapter 9

Conclusions

0

10

20

30

40

50

60

D
ep

th
 (k

m
)

1.4 1.5 1.6 1.7 1.8 1.9

Vp/Vs

NOR2S50S

Best value Vp/Vs= 1.790 & 33.0 km

Figure 9.1: The result of grid search in a
two-dimensional model space following the
method (Zhu and Kanamori, 2000). The
parameters are the Poisson ratio Vp/Vs and
the depth to the Moho. The data were from
station Nord and the forward model used the
autocorrelated wavelet. From (Dahl-Jensen,
2008).

Given the nature of synthetic data it
is easy to validate whether or not the
algorithms did recover model results
in the synthetic data. The case was
that all the algorithms did a fairly
good job in recovering the waveform
and the underlying model.

Validating the results from the
real world data is more problematic.
Fortunately, Greenland was investi-
gated in 2003 using receiver function
analysis (Dahl-Jensen et al., 2003,
p. 390). In the survey an approxi-
mated depth to the Moho underneath
a series of seismic stations was pro-
vided. The depth to the Moho at sta-
tion Nord was approximated to 30±2
km. Later (Dahl-Jensen, 2008) the
depth to the Moho for the same sta-
tion was found to be 33 km. Nei-
ther the Uniform nor Neighborhood
search algorithms resulted in reason-
able models but both the Metropolis
and Levenberg-Marquardt algorithms
showed a velocity increase around 30
km. Due to the wavelet problem this result does not necessarily mean that the
algorithms found the Moho. But it does give some confidence that the algo-
rithm could perform quite well if the wavelet embedded in the data had been
used.

The Levenberg-Marquardt method fitted the receiver function surprisingly
well. Actually the algorithm fitted the data too well by overfitting the data.
The data contains noise and possible 3D effects structures in the underground
not accounted for in the forward model. The algorithm has created non-existing

64 Conclusions

velocity changes to fit the waveform perfectly. This should be considered when
interpreting the results from the Levenberg-Marquardt algorithm. In my opin-
ion the best method to apply on real data is the Metropolis algorithm. Not
only is it fast but it also provides the much needed uncertainties on the results.
From the marginal probability plot it is easy to extract the mean and standard
deviations for each layer.

It was expected that the Uniform search algorithm would perform badly
in high dimensional problems and it can only be recommended for very small
problems. On the other hand I had expected much from the Neighborhood
algorithm. It turned out that this algorithm also faces great problems with
high dimensional model spaces and I would not consider using this algorithm
in other problems.

In light of the recent speculation in oil exploitation in Greenland and the
increased interest in the arctic area receiver function analysis is a highly relevant
method for extracting geological information from terrain otherwise difficult to
survey by conventional means.

9.1 Further work

If time was not an issue the most interesting thing to investigate in this thesis
would be to change the forward model so I could use any given wavelet. If the
forward model was using the embedded wavelets I would expect a much better
data fit and removal of the low-velocity layer.

Another subject for further work would be to implement the parametrization
described in (Jacobsen and Svenningsen, 2008) and evaluate the results from
the algorithms.

While investigating the Levenberg-Marquardt algorithm it became clear
that other more similar but more advanced methods such as the trust region
method (Celis et al., 1984) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method (Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970) ex-
isted. Considering the surprisingly good results from the Levenberg-Marquardt
method I would be interested in implementing these alternatives.

Bibliography

Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P wave-
forms. Bulletin of the seismological Society of America, 81(6):2504–2510.

Ammon, C. J. (1997). An overview of receiver-function analysis. Webpage.
Department of Geosciences Pennsylvania State University. Available from:
http://eqseis.geosc.psu.edu/~cammon/HTML/RftnDocs/rftn01.html.

Ammon, C. J., Randall, G. E., and Zandt, G. (1990). On the nonuniqueness of
receiver function inversions. Journal of Geophysical Research, 95(B10):15303–
15318.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algo-
rithm for convex hulls. ACM Trans. on Mathematical Software, 22(4):469–
483. Available from: http://www.qhull.org.

Birch, F. (1964). Density and Composition of Mantle and Core. Journal of
Geophysical Research, 69.

Broyden, C. (1970). The convergence of a class of double-rank minimization
algorithms. II: The new. J. Inst. Math. Appl., 6:222–231.

Celis, M., Dennis, J., and Tapia, R. (1984). A trust region strategy for nonlinear
equality constrained optimization. Numerical Optimization, pages 71–82.

Clayton, R. and Wiggins, R. (1976). Source shape estimation and deconvolution
of teleseismic body waves. Geophys. JR Astron. Soc, 47:151–177.

Dahl-Jensen, T. (2008). Personal communication. GEUS – De Nationale Geol-
ogiske Undersøgelser for Danmark og Grønland.

Dahl-Jensen, T., Larsen, T., Woelbern, I., Bach, T., Hanka, W., Kind, R.,
Gregersen, S., Mosegaard, K., Voss, P., and Gudmundsson, O. (2003). Depth
to Moho in Greenland: receiver-function analysis suggests two Proterozoic
blocks in Greenland. Earth and Planetary Science Letters, 205(3-4):379–393.

Ekrem, Z. (2002). The shear wave velocity structure of the eastern Marmara
region by using receiver function analysis. PhD thesis, Department of Geo-
physics, Istanbul Technical University.

Fletcher, R. (1970). A new approach to variable metric algorithms. The Com-
puter Journal, 13(3):317–322.

http://eqseis.geosc.psu.edu/~cammon/HTML/RftnDocs/rftn01.html
http://www.qhull.org

66 BIBLIOGRAPHY

Goldfarb, D. (1970). A family of variable metric updates derived by variational
means. Mathematics of Computing, 24(109):23–26.

Jacobsen, B. H. (2008). Personal Communications. Department of Earth Sci-
ences, University of Aarhus.

Jacobsen, B. H. and Svenningsen, L. (2008). Enhanced Uniqueness and Linear-
ity of Receiver Function Inversion. Bulletin of the Seismological Society of
America, 98(4):1756.

Kennett, B. L. N. (1983). Seismic Wave Propagation in Stratified Media. Cam-
bridge University Press.

Kennett, B. L. N. and Engdahl, E. R. (1991). Traveltimes for global earth-
quake location and phase identification. Geophysical Journal International,
105(2):429–465.

Kreysig, E. (1999). Advanced Engineering Mathematics. John Wiley & Sons,
Inc, 8 edition.

Langston, C. A. (1979). Structure under mount Rainier, Washington, inferred
from teleseismic body waves. J. Geophys. Res., 84(B9):4749–4762.

Lay, T. and Wallace, T. C. (1995). Modern Global Seismology, volume 58 of
International geophysics series. Academic Press.

Levenberg, K. (1944). A method for the solution of certain nonlinear problems
in least squares. Q. Appl. Math, 2(2):164–168.

Madsen, K., Nielsen, H. B., and Tingleff, O. (2004). Methods for non-linear least
squares problems. Lecture notes, Institute of Informatics and Mathematical
Modeling, Technical University of Denmark. Available from: www2.imm.dtu.
dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf.

Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear
parameters. SIAM J. Appl. Math, 11(2):431–441.

Menke, W. (1984). Geophysical Data Analysis: Discrete Inverse Theory. Aca-
demic Press.

Metropolis, N. (1987). The beginning of the Monte Carlo method. Los Alamos
Science, 15(Special Issue):125–130.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.
(1953). Equation of State Calculations by Fast Computing Machines. The
Journal of Chemical Physics, 21(6):1087.

Mohorovičić, A. (1909). Das beben vom 8. Jahrbruch met. Obs. Zagreb, 9:1–63.

Moore Gordon, E. (1965). Cramming more components onto integrated circuits.
Electronics, 38(8):114–117.

www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf

BIBLIOGRAPHY 67

Mosegaard, K. and Sambridge, M. (2002). Monte Carlo analysis of inverse
problems. Inverse Problems, 18:R29–R54.

Mosegaard, K. and Tarantola, A. (1995). Monte carlo sampling of solutions to
inverse problems. Journal of Geophysical Research, 100(B7):12431–12447.

Phinney, R. A. (1964). Structure of the earth’s crust from spectral behavior of
long-period body waves. Journal of Geophysical Research, 69:2997.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).
Numerical Recipes in Fortran 77, volume 1 of Fortran Numerical Recipes.
Cambridge University Press, 2 edition.

Reading, A., Kennett, B., and Sambridge, M. (2003). Improved inversion for
seismic structure using transformed, S-wavevector receiver functions: Remov-
ing the effect of the free surface. Geophys. Res. Lett, 30(19):1981.

Sambridge, M. (1998). Exploring multidimensional landscapes without a map.
Inverse Problems, 14:427–440.

Sambridge, M. (1999). Geophysical inversion with a neighborhood algorithm –
I. search a parameter space. Geophysical Journal International, 138:479–494.

Sambridge, M. (2001). Finding acceptable models in nonlinear inverse problems
using neighborhood algorithm. Inverse Problems, 17:387–403.

Sambridge, M. and Mosegaard, K. (2002). Monte Carlo methods in geophysical
inverse problems. Rev. Geophys, 40(3):1009.

Shanno, D. (1970). Conditioning of quasi-Newton methods for function mini-
mization. Mathematics of Computation, 24(111):647–656.

Shearer, P. M. (1999). Introduction to Seismology. Cambridge University Press.

Svenningsen, L. and Jacobsen, B. H. (2004). Comment on “Improved inversion
for seismic structure using transformed, S-wavevector receiver functions: Re-
moving the effect of the free surface” by Anya Reading, Brian Kennett and
Malcolm Sambridge. Geophys. Res. Lett, 31:L24609.

Tarantola, A. (2005). Inverse problem theory and methods for model parameter
estimation. SIAM.

Upadhyay, S. K. (2004). Seismic reflection processing: With special reference
to Anisotropy. Springer.

Wall, L., Christiansen, T., and Orwant, J. (2000). Programming Perl. O’Reilly.

Walsh, B. (2004). Markov chain Monte Carlo and Gibbs sampling. Lecture
notes. Available from: http://www.stat.columbia.edu/~liam/teaching/
neurostat-spr07/papers/mcmc/mcmc-gibbs-intro.pdf.

http://www.stat.columbia.edu/~liam/teaching/neurostat-spr07/papers/mcmc/mcmc-gibbs-intro.pdf
http://www.stat.columbia.edu/~liam/teaching/neurostat-spr07/papers/mcmc/mcmc-gibbs-intro.pdf

BIBLIOGRAPHY i

Weisstein, E. W. (2008). Point-line distance – 3-dimensional. MathWorld – A
Wolfram Web Resource. Available from: http://mathworld.wolfram.com/
Point-LineDistance3-Dimensional.html.

Yilmaz, Ö. and Doherty, S. (1987). Seismic data processing. Society of Explo-
ration Geophysicists.

Zhu, L. and Kanamori, H. (2000). Moho depth variation in southern California
from teleseismic receiver functions. Journal of Geophysical Research, 105(B2).

http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

Appendix A

Mathematics

A.1 Convolution theorem

Theorem 1 (Convolution) Let f(t) and g(t) satisfy the hypothesis of the ex-
istence theorem. The product of their transform F (s) = L (f) and G(s) = L (g)
is the transform H(s) = of the convolution h(t) of f(t) and g(t), which is
denoted by (f ∗ g)(t) and defined by

h(t) = (f ∗ g)(t) =
∫ t

0
f(τ)g(t− τ)dτ (A.1)

From (Kreysig, 1999, p. 279).

A.2 Approximate Hessian

∂F

∂pj
(p) =

m∑
i=1

fi(p)
∂fi

∂pj
(p)

It can be seen that the gradient of F is

F ′(p) = J(p)T f(p)

We will also need the second derivatives of F , so we calculate the Hessian.

∂2F

∂pj∂pk
(p) =

m∑
i=1

(
∂fi

∂xj
(p)

∂fi

∂xk
(p) + fi(p)

∂2fi

∂xj∂pk
(p)
)

such that

F ′′(p) = J(p)TJ(p) +
m∑

i=1

fi(x)f ′′i (x). (A.2)

A approximation to the Hessian can be made by only considering the first term,
JTJ, in this equation, which is computational much easier than calculating the
second derivatives.

By looking at the derivative of F

xi+1 = xi −
(
JTJ + λdiag [H]

)−1
d (A.3)

A.3 The distance from a line to a point in 5 dimensions iii

A.3 The distance from a line to a point in 5 dimen-
sions

This following is based distance in 3D given by (Weisstein, 2008) but expanded
to 5D.

Consider two points a = (a1, a2, a3, a4, a5) and b = (b1, b2, b3, b4, b5) such
that the vector along the line would be given by

v =


a1 (b1 − a1) · t
a2 (b2 − a2) · t
a3 (b3 − a3) · t
a4 (b4 − a4) · t
a5 (b5 − a5) · t


The squared distance between a point on the line with parameter t and

point in space c = (c1, c2, c3, c4, c5) is hence

d2 =

(a1 − c1) + (b1 − a1) · t+
(a2 − c2) + (b2 − a2) · t+
(a3 − c3) + (b3 − a3) · t+
(a4 − c4) + (b4 − a4) · t+
(a5 − c5) + (b5 − a5) · t+
(a1 − c1) + (b1 − a1) · t

(A.4)

To find the minimum distance I differentiate d2 with regard to t and find the
t value where dd2

dt = 0. This tbest is put back into equation A.4 which gives a
expression for the minimum distance.

The following MATLAB code solves the problem of finding the distance
from a line to a point in 5D.

syms t

syms a1 a2 a3 a4 a5 ;
syms b1 b2 b3 b4 b5 ;
syms c1 c2 c3 c4 c5 ;

dsq = . . .
((a1−c1)+(b1−a1) *t) ˆ2 + . . .
((a2−c2)+(b2−a2) *t) ˆ2 + . . .
((a3−c3)+(b3−a3) *t) ˆ2 + . . .
((a4−c4)+(b4−a4) *t) ˆ2 + . . .
((a5−c5)+(b5−a5) *t) ˆ2 ;

dsqdiff = d i f f (dsq , t) − 0 ;
tbest = solve (dsqdiff , t) ;
solution = subs (dsq , t , tbest)

The solution is quite simple for 2D or 3D but in 5D is rather unpleasant.

>> solution =
(a1−c1+(b1−a1)*(−a1*b1+a1ˆ2+c1*b1−c1*a1−a2*b2+a2ˆ2+c2*b2−c2*

a2−a3*b3+a3ˆ2+c3*b3−c3*a3−a4*b4+a4ˆ2+c4*b4−c4*a4−a5*b5+a5ˆ2+
c5*b5−c5*a5) /(b1ˆ2−2*a1*b1+a1ˆ2+b2ˆ2−2*a2*b2+a2ˆ2+b3ˆ2−2*a3*

b3+a3ˆ2+b4ˆ2−2*a4*b4+a4ˆ2+b5ˆ2−2*a5*b5+a5 ˆ2)) ˆ2+(a2−c2+(b2−

iv Mathematics

a

b

c

l

v

Figure A.1: The distance from a line to a point in Ndim dimensions from parametrized
view point

a2)*(−a1*b1+a1ˆ2+c1*b1−c1*a1−a2*b2+a2ˆ2+c2*b2−c2*a2−a3*b3+
a3ˆ2+c3*b3−c3*a3−a4*b4+a4ˆ2+c4*b4−c4*a4−a5*b5+a5ˆ2+c5*b5−c5*

a5) /(b1ˆ2−2*a1*b1+a1ˆ2+b2ˆ2−2*a2*b2+a2ˆ2+b3ˆ2−2*a3*b3+a3ˆ2+
b4ˆ2−2*a4*b4+a4ˆ2+b5ˆ2−2*a5*b5+a5 ˆ2)) ˆ2+(a3−c3+(b3−a3)*(−a1*

b1+a1ˆ2+c1*b1−c1*a1−a2*b2+a2ˆ2+c2*b2−c2*a2−a3*b3+a3ˆ2+c3*b3−
c3*a3−a4*b4+a4ˆ2+c4*b4−c4*a4−a5*b5+a5ˆ2+c5*b5−c5*a5) /(b1ˆ2−
2*a1*b1+a1ˆ2+b2ˆ2−2*a2*b2+a2ˆ2+b3ˆ2−2*a3*b3+a3ˆ2+b4ˆ2−2*a4*

b4+a4ˆ2+b5ˆ2−2*a5*b5+a5 ˆ2)) ˆ2+(a4−c4+(b4−a4)*(−a1*b1+a1ˆ2+
c1*b1−c1*a1−a2*b2+a2ˆ2+c2*b2−c2*a2−a3*b3+a3ˆ2+c3*b3−c3*a3−
a4*b4+a4ˆ2+c4*b4−c4*a4−a5*b5+a5ˆ2+c5*b5−c5*a5) /(b1ˆ2−2*a1*

b1+a1ˆ2+b2ˆ2−2*a2*b2+a2ˆ2+b3ˆ2−2*a3*b3+a3ˆ2+b4ˆ2−2*a4*b4+
a4ˆ2+b5ˆ2−2*a5*b5+a5 ˆ2)) ˆ2+(a5−c5+(b5−a5)*(−a1*b1+a1ˆ2+c1*

b1−c1*a1−a2*b2+a2ˆ2+c2*b2−c2*a2−a3*b3+a3ˆ2+c3*b3−c3*a3−a4*

b4+a4ˆ2+c4*b4−c4*a4−a5*b5+a5ˆ2+c5*b5−c5*a5) /(b1ˆ2−2*a1*b1+
a1ˆ2+b2ˆ2−2*a2*b2+a2ˆ2+b3ˆ2−2*a3*b3+a3ˆ2+b4ˆ2−2*a4*b4+a4ˆ2+
b5ˆ2−2*a5*b5+a5 ˆ2)) ˆ2

A.4 The distance from a line to a point in Ndim di-
mensions

Given two points a and b constituting a line l in a Ndim dimensional space.
The unit vector along l is given by

v =
b− a
|b− a|

and the points on l can be written as

p(t) = a + vt t ∈ R.

A.4 The distance from a line to a point in Ndim dimensions v

The goal is to find the perpendicular distance to l from a point c. The distance
to a point p(t) on l can be written as

d(c,p(t)) =

(
N∑

i=1

(ci − pi(t))
2

)1/2

=

(
N∑

i=1

(ci − (ai + vit))
2

)1/2

. (A.5)

Defining the squared distance as

d2 = (d(c,p(t)))2

=
N∑

i=1

(ci − (ai + vit))
2

the minimum distance to can be found by differentiating d2 with respect to t
and setting it equal to zero

dd2

dt
= −2

N∑
i=1

(ci − (ai + vit0)) vi

= −2
N∑

i=1

(ci − ai) vi − 2t0
N∑

i=1

v2
i

= −2
N∑

i=1

(ci − ai) vi − 2t0

= 0

Solving this equation yields the t that minimizes the distance

t0 = −
N∑

i=1

(ci − ai) vi (A.6)

Inserting A.6 into A.5 reveals the minimum distance from c to the line l as

dmin =

 N∑
i=1

(
ci −

(
ai + vi

N∑
i=1

(ci − ai) vi

))2
1/2

.

Appendix B

Code

B.1 Uniform Search

% $Id : UniformSearch .m 146 2008−12−12 16 : 20 : 31Z t j ans son $
c l c ; c l e a r a l l ; c l c ;
tegn = 1 ; % Save the f i g u r e s to harddisk
setuppath % Rede f ines the path inc lude the l i b f o l d e r
outputpath = ' /home/ gfy−1/ t j ans son / ' ; % Folder c r e a t e images are ←↩

saved to .
time = datestr (now , 'yyyy−mmdd−HHMM') ;

%% Algorithm parameters
m_amount = 100000; % The amount o f samples
m_timepersample = 0 . 1 2 7 ; % in seconds
m_sorted_amount = min(m_amount *0 . 1 , 25) ;
onlyvelocity = 0 ;

%% Load the data

% Loads the data
data = load ('R NOR THOMAS CLEAN 1296 ') ;
data_name = ' Stat i on NORD ' ;
data_name_file = 'NORD ' ;
data_length = length (data) ;

% Def ine the data s e t s that you are t ry ing to f i t the func t i on to .
%data para = [2 0 , 35 , 5 . 80 , 6 . 5 , 8 . 0 4] ;
%data = r f f o r w a r d (data para (1 : 2) , data para (3 : 5)) ;
%data l ength = length (data) ;
%data name = ' Synthet i c data ' ;
%data name f i l e = ' synthet i c ' ;

%% Setup the parameter space

% The upper and lower bounds o f the parameter space
% The s t a r t i n g model
zmin = 1 ;
zmax = 60 ;
layers_stepsize = 30 ;
layers = length (zmin : layers_stepsize : zmax) ;
modelyaxis = 'Depth [km] ' ;
m_zs = zmin : layers_stepsize : zmax ;

B.2 Metropolis vii

m_VP = 4:(8−4) /layers : 8 ;
m_start = [m_zs m_VP] ;
startmodel = rf_forward (m_zs , m_VP) ;

ZSbound_lo = 01 ; % Minimum depth
ZSbound_up = 60 ; % Maximum depth
VPbound_lo = 03 ; % Minimum v e l o c i t y
VPbound_up = 09 ; % Maximum v e l o c i t y

% Generate the models array − to hold model parameters and m i s f i t
% (depth1 , depth2 , . . . , ve l1 , ve l2 , . . . , m i s f i t)
models = zero s (m_amount , l ength (m_start)+1) ;
models (: , l ength (m_start)+1) = 10 ; % The i n i t i a l m i s f i t

f o r i=1:m_amount
models (i , 1 : l ength (m_zs)) = s o r t ((1 + (ZSbound_up−1)* rand (1 , l ength (←↩

m_zs)))) ;
end

f o r i=1:m_amount
models (i , l ength (m_zs) +1: l ength (m_start)) = VPbound_lo+(VPbound_up−←↩

VPbound_lo) * rand (1 , l ength (m_VP)) ;
end

%% Calcu l a t ing
t i c
f o r i=1:m_amount

models (i , l ength (m_start)+1)= . . .
rms_data_many (. . .
models (i , 1 : l ength (m_zs)) , . . .
models (i , l ength (m_zs) +1: l ength (m_start)) , . . .
data) ;

i f mod (i , 2 5) == 0
f p r i n t f (' I t e r a t i o n s l e f t : %4.0 f ' , m_amount−i)
f p r i n t f (' Time l e f t : %4.2 f min .\n ' , . . .

((m_amount−i) *m_timepersample) /60)
end

end
timespend = toc ;
f p r i n t f (' Total time spend : %5.0 f seconds \n ' , timespend)
f p r i n t f ('Time per mode : %5.3 f seconds \n ' , timespend/m_amount)

%% Proces s ing

%Find the best p o s i t i o n s
[value , position] = s o r t (models (: , l ength (m_start)+1)) ;
m_sorted = models (position (1 : m_sorted_amount) , :) ;
m_sorted_length = s i z e (m_sorted , 1) ;

% Ca lcu la te the r e c e i v e r func t i on f o r l a s t amount o f samples
rf_functions = zero s (m_sorted_length , l ength (data)) ;
f o r i=1: m_sorted_length ;

rf_functions (i , :) = rf_forward (. . .
m_sorted (i , 1 : l ength (m_zs)) , . . .
m_sorted (i , l ength (m_zs) +1: l ength (m_start))) ;

end

B.2 Metropolis

viii Code

% $Id : Metropo l i s .m 148 2008−12−14 00 : 48 : 38Z t j ans son $
c l c ; c l f ; c l e a r a l l ;
tegn=1; % Save the f i g u r e s to harddisk
anim=0; % Create animated GIF ' s ?
wavelet=0; % Draws wavelet ;
setuppath % Rede f ines the path inc lude the l i b f o l d e r
time = datestr (now , 'yyyy−mmdd−HHMM') ;

%% I n i t i a l i z e observede data and s t a r t model
% Loads the data
data = load ('R NOR THOMAS CLEAN 1296 ') ;
data_name = ' Stat i on NORD ' ;
data_name_file = 'NORD ' ;
data_length = length (data) ;

%data z s = [2 0 , 3 5] ; %IASPEI l a y e r s in c ru s t
%data VPs = [5 . 8 , 6 . 5 , 8 . 0 4] ; %IASPEI v e l o c i t i e s
%data = r f f o r w a r d (data zs , data VPs) ;
%data name = [' Synthet ic '] ;
%data name f i l e = [' synthet i c '] ;
%data l ength = length (data) ;

% The s t a r t i n g model
zmin = 1 ;
zmax = 60 ;
layers_stepsize = 1 ;
layers = length (zmin : layers_stepsize : zmax) ;
modelyaxis = 'Depth [km] ' ;
m_zs = zmin : layers_stepsize : zmax ;
m_VP = 4:(8−4) /layers : 8 ;
m_start = [m_zs m_VP] ;
startmodel = rf_forward (m_zs , m_VP) ;

%% I n i t i a l i z e the Metropo l i s a lgor i thm
%%

runtime = 1 8 0 . 0 ; % in minuttes
tsample = 0 . 4 1 7 ; % time per sample in seconds 0 .101 with 2 l a y e r s and ←↩

0 .306 with 4
nsamples = c e i l ((runtime * 60) / tsample) ;
samples = zero s (l ength (m_start) +1, nsamples) ;
accept = zero s (nsamples , 1) ;

% This gene ra t e s the random number , both p o s i t i v e and negat ive , to be ←↩
added

% at each i t t e r a t i o n . The random number i s i e . between 0 and maxZ f o r ←↩
the

% he i gh t s and between 0 and maxVP f o r the he i gh t s
pct = 0 . 0 5 ;
%maxZ = 40* pct ;
%maxVP = 10* pct ;
maxZ = 1 . 0 ;
maxVP = 1 . 0 ;
randZstep = (0+(maxZ−0)) * rand (nsamples , 1) .* s i gn (rand (nsamples , 1) −0.5) ;
randVPstep = (0+(maxVP−0)) * rand (nsamples , 1) .* s i gn (rand (nsamples , 1)←↩

−0.5) ;
randdir = f i x ((l ength (m_start)−1)* rand (nsamples , 1) +1) ;
randdirVP = f i x ((l ength (m_zs)+1)+(length (m_start)+1−(l ength (m_zs)+1)) *←↩

rand (nsamples , 1)) ;

%% The i t t e r a t i o n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t i c

m_cur = m_start ; % The f i r s t model i s the startmode l
m_cur_misfit = 10000; % The f i r s t models m i s f i t i s bad

B.2 Metropolis ix

misfit = zero s (nsamples , 1) ; % Array to s t o r e models

f o r i=1:nsamples ;

% The new model i s based on the o ld model
m_new = m_cur ;

% Shows the proce s s
i f mod (i , 2 5)== 2

done=(i/nsamples) *100 ; % Shows the p rog r e s s in procent
timeleft_min=((nsamples−i) *tsample) ;
c l f ; %I f t h i s i s not done t h i s image w i l l use 3GB of memory in ←↩

10000 models .
subplot (2 , 1 , 1)
imagesc (samples (l ength (m_zs) +1: l ength (m_start) , :)) ; c o l o rba r ; %←↩

show only speed
x l a b e l (modelxaxis) ;
y l a b e l (modelyaxis) ;
hold on

subplot (2 , 1 , 2)
p l o t (samples (l ength (m_start) +1 , :))
g r i d
x l a b e l (modelxaxis) ;
y l a b e l ('RMS ') ;
a x i s ([0 l ength (samples (l ength (m_start) +1 , :)) 0 max(samples (←↩

l ength (m_start) +1 , :))])
drawnow
f p r i n t f (' \n %3.2 f seconds l e f t , ' , timeleft_min)
f p r i n t f ('%3.2 f%% done , ' , done)
f p r i n t f (' rms = %3.8 f %. ' , m_cur_misfit)

end

% I f t h i s loop i s inc luded both depth and v e l o c i y are changed .
%i f randdi r (i) <= length (m zs)
% %Var ies the depth
% m new(randdi r (i)) = m new(randdi r (i)) − randZstep (i) ;
%e l s e

%Var ies the v e l o c i t y
% Pick out a random element o f m new and some randomness
% But only in speeds the depths do not change
i f randdirVP (i)−l ength (m_zs)+1 < 20 % The depth i s l e s s than ←↩

20 ;
%I f the speed ge t s l a r g e r than 8 .5km/ s subt rac t in s t ead o f ←↩

add
% Trine would l i k e to have 7 but I am a f f r a i d i t w i l l ←↩

i n t e r f e r .
i f m_new (randdirVP (i)) + randVPstep (i) > 7

m_new (randdirVP (i)) = m_new (randdirVP (i)) − randVPstep←↩
(i) ;

e l s e
m_new (randdirVP (i)) = m_new (randdirVP (i)) + randVPstep←↩

(i) ;
end

e l s e

% I f the speed i s l a r g e r than 8 .5km/ s subt rac t in s t ead o f ←↩
add

i f m_new (randdirVP (i)) + randVPstep (i) > 8 .5
m_new (randdirVP (i)) = m_new (randdirVP (i)) − randVPstep (←↩

i) ;
e l s e

m_new (randdirVP (i)) = m_new (randdirVP (i)) + randVPstep (←↩
i) ;

end
end

x Code

%end

% Make sure that the models are never zero or negat ive
m_new = abs (m_new) ;
f o r j=1: l ength (m_new) ;

i f (m_new (j) == 0)
m_new (j) = 0 . 1 ;

end
end

% Calcu la te the acceptance o f the model
% Mosegaard & Tarantola , 1995 ,
% Journal o f Geophysica l Research , s i d e 6
m_new_misfit = misfit_data_many (m_new (1 : l ength (m_zs)) , . . .

m_new (l ength (m_zs) +1: l ength (m_start)) , . . .
data) ;

i f m_new_misfit <= m_cur_misfit

P_accept = 1 ;
e l s e

deltaS = m_new_misfit − m_cur_misfit ;
P_accept = exp(−(deltaS) / (0 . 1) ˆ2) ;

end

i f (rand < P_accept)
m_cur = m_new ;
m_cur_misfit = m_new_misfit ;
accept (i) = 1 ;

end

% Save a l l the models and the m i s f i t f o r l a t e r use .
samples (1 : l ength (m_start) , i) = m_cur ;
samples (l ength (m_start) +1,i) = m_cur_misfit ;

end

% Running average on the data .
% This i s a hack s i n c e f i l t e r would run the average from 1 in the ←↩

begning
% and not the value i t should , so I copy the f i r s t row in 5 t imes and
% remove them again a f t e r the f i l t e r i n g .
tmp1 = samples (l ength (m_zs) +1 , :) ;
tmp2 = samples (l ength (m_zs) +1: l ength (m_start) , :) ;
tmp3 = [tmp1 ; tmp1 ; tmp1 ; tmp1 ; tmp1 ; tmp1 ; tmp1 ; tmp1 ; tmp1 ; tmp1 ; tmp2←↩

] ;
windowSize = 5 ;
samples_smooth = f i l t e r (ones (1 , windowSize) . / windowSize , 1 , tmp3) ;
samples_smooth = samples_smooth (1 1 : end , :) ;

% Ca lcu la te the ac c ep t ra t e
naccept = 0 ;
f o r i=1:nsamples

i f accept (i) == 1
naccept=naccept+1;

end
end
acceptrate = (naccept/nsamples) *100 ;

% Show some s t a t i s t i c s
f p r i n t f (' \n\n Acceptrate : %3.2 f ' , acceptrate)
f p r i n t f (' \n Number o f samples : %3.0 f ' , nsamples)
totaltime = toc ;
timepersample = totaltime/nsamples ;
f p r i n t f (' \n Time per i t t e r a t i o n : %3.3 f ' , timepersample)
f p r i n t f (' \n Totalt ime : %3.3 f \n\n ' , totaltime)

B.3 Neighborhood search – Discretizing the axis xi

B.3 Neighborhood search – Discretizing the axis

% $Id : NeighborhoodSmallSteps .m 149 2008−12−14 12 : 06 : 08Z t j ans son $
c l e a r a l l ; c l c ;
tegn = 1 ; % Save the f i g u r e s to harddisk
draw_voronoi = 0 ; % Draw the Voronoi c e l l s ?
setuppath % Rede f ines the path inc lude the l i b f o l d e r
time = datestr (now , 'yyyy−mmdd−HHMM') ;
testing = 0 ;
i f testing

profile on

end

%% Algorithm parameters
Itt = 40 ; % The number o f i t t e r a t i o n s t h i s p roce s s should cont inue .
N_s = 250 ; % Amount o f models to c r e a t e at beg in ing and each l e v e l .
N_r = 25 ; % The amount o f models with the best m i s f i t .

% This ensure s that no bad N s N r combos are chosen
i f mod (N_s , N_r) ˜=0

f p r i n t f (1 , 'ERROR − mod(N s , N r) i s not 0\ n e x i t i n g \n ')
break

end

% Def ines the s t e p s i z e in s i z e the c e l l s
stepsize_orig = 1 . 0 0 0 0 ; % F i r s t s t e p s i z e
stepsize_min = 0 . 0 0 1 0 ; % S t e p s i z e should get smal l than t h i s
border_resolution = 0 . 0 0 1 0 ; % The maximum d i s t ance to the border

%% Load the data
data = load ('R NOR THOMAS CLEAN 1296 ') ;
data_name = ' Stat i on NORD ' ;
data_name_file = 'NORD ' ;
data_length = length (data) ;

% Def ine the data s e t s that you are t ry ing to f i t the func t i on to .
%data para = [2 0 , 35 , 5 . 80 , 6 . 5 , 8 . 0 4] ;
%data = r f f o r w a r d (data para (1 : 2) , data para (3 : 5)) ;
%data l ength = length (data) ;
%data name = ' Synthet i c data ' ;
%data name f i l e = ' synthet i c ' ;

%% Setup the parameter space
% The upper and lower bounds o f the parameter space
% The s t a r t i n g model

zmin = 1 ;
zmax = 60 ;
layers_stepsize = 25 ;
layers = length (zmin : layers_stepsize : zmax) ;
modelyaxis = 'Depth [km] ' ;
m_zs = zmin : layers_stepsize : zmax ;
m_VP = 4:(8−4) /layers : 8 ;
m_start = [m_zs m_VP] ;
startmodel = rf_forward (m_zs , m_VP) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% VERY IMPORTANT
% When the f o l l o w i n g loop as we l l as the s p e c i a l v e r s i on o f dim loop ←↩

below
% i s a c t i v e only the v e l o c i t y parameter w i l l change .
onlyvelocity = 0 ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xii Code

% Set the boundary o f the space
bounds (1 : l ength (m_zs) , 1) = 10 ; % Depth lower
bounds (1 : l ength (m_zs) , 2) = 40 ; % Depth upper
bounds (l ength (m_zs) +1: l ength (m_start) , 1) = 03 ; % Speed lower
bounds (l ength (m_zs) +1: l ength (m_start) , 2) = 09 ; % Speed upper

% Generate the models array − to hold model parameters and m i s f i t
% (depth1 , depth2 , . . . , ve l1 , ve l2 , . . . , m i s f i t)
models = zero s (Itt*N_s , l ength (m_start)+1) ;
models (: , l ength (m_start)+1) = 10 ; % The i n i t i a l m i s f i t
f o r i=1: l ength (m_start)

models (1 : N_s , i) = bounds (i , 1) +(bounds (i , 2)−bounds (i , 1)) * rand (N_s , 1)←↩
;

end
tmpmodel = zero s (1 , l ength (m_start)) ;

i f onlyvelocity

f o r i=1:((Itt+1)*N_s)
models (i , 1 : l ength (m_zs)) = m_zs ;

end
end

%% Test ing ar rays and parameters
counterlooptoc = zero s (1 , Itt) ;
lowupranddim_num = length (m_start) *(N_s/N_r) *N_r*Itt ;
lowupranddim_tmp = 1 ;
lowupranddim = zero s (lowupranddim_num , 6) ;
testdim = 1 ;

%% Calcu l a t ing Ce l l

% This func t i on c a l c u l a t e s the euc l i d ean func t i on
distance = @ (a , b) s q r t (sum ((a (1 : l ength (m_start))−b (1 : l ength (m_start)))←↩

. ˆ 2)) ;

% Loop through the amount o f i t t e r a t i o n s s p e c i e f i e d
f o r counter=1:Itt

c l f
subplot (2 , 1 , 1)
imagesc (models (: , 1 : l ength (m_start)) ') ;
c o l o rba r
subplot (2 , 1 , 2)
p l o t (models (: , l ength (m_start)+1))
x l a b e l ('Model number ')
y l a b e l (' M i s f i t ')
g r i d on

drawnow

t i c
c l e a r distplot distplot2

itmp = 0 ; %Used f o r sav ing the new po in t s to models

%Calcu la te the m i s f i t o f the new po in t s
f o r countermisfit=(1+(counter−1)*N_s) : (counter*N_s)

models (countermisfit , l ength (m_start)+1) = . . .
rms_data_many (. . .
models (countermisfit , 1 : l ength (m_zs)) , . . .
models (countermisfit , l ength (m_zs) +1: l ength (m_start)) , . . .
data) ;

end
lastmisfit=models (countermisfit , l ength (m_start)+1) ;

%The models i s so r t ed acord ing to m i s f i t va lue
[value , position] = s o r t (models (: , l ength (m_start)+1)) ;

B.3 Neighborhood search – Discretizing the axis xiii

% Just f o r the p l o t t i n g part
i f counter == 1

firstbestmodels = models (position (1 : N_r) , :) ;
end

% For each o f the promis ing models
f o r index=1:N_r

% Def ine the promis ing models , cor re sponds to po int A in the ←↩
a r t i c l e

promising = models (position (index) , 1 : l ength (m_start)) ;

%The g ib s sampler i s s t a r t e d at the cente r o f promis ing po int .
tmpmodel_orig = promising ;

% Generate N s/N r model i n s i d e each promis ing model
f o r ins=1:N_s/N_r

% Loops through the dimensions
i f onlyvelocity % Var ies only v e l o c i t y

dimtmp = length (m_zs) +1: l ength (m_start) ;
e l s e % Var ies both depth and v e l o c i t y

dimtmp = 1 : l ength (m_start) ;
end

f o r dim=dimtmp ;

y=1;

%%% Upper boundary

i f onlyvelocity

tmpmodel_orig (1 , 1 : l ength (m_zs)) = m_zs ;
end

uppertmp = 100 ;
movingpoint = tmpmodel_orig ;
stepsize = stepsize_orig ;
dist = zero s (counter*N_s , 1) ;

% Stop at upper bound
whi le movingpoint (dim) < bounds (dim , 2)

% Find the d i s t ance to the owner o f the Voronoi ←↩
c e l l .

distpromis = norm(movingpoint−promising) ;

% Find the d i s t ance to a l l other models
f o r j=1:(counter*N_s)

dist (j , 1) = norm(movingpoint−models (j , 1 : l ength←↩
(m_start))) ;

end
sortdist = s o r t (dist) ;

% Bound i s met i f another model i s c l o s e r
i f sortdist (1) < distpromis

% Stop the search i f the d i s t ance to the border ←↩
i s

% l e s s than the border r e s o l u t i o n or the ←↩
s t e p s i z e

% can not be reduced f u r t h e r .
i f abs (sortdist (1)−distpromis) < ←↩

border_resolution | | stepsize < stepsize_min

uppertmp = movingpoint (dim) ;
break

e l s e
% The border r e s o l u t i o n i s not met or the

xiv Code

% s t e p s i z e can be reduced f u r t h e r .
movingpoint (dim) = movingpoint (dim) − ←↩

stepsize ;
stepsize = stepsize /2 ;

end
end

% Take a step
movingpoint (dim) = movingpoint (dim) + stepsize ;

%TESTING − the d i s t a n c e s to movingpoint
i f testing

i f dim==testdim && ins==1
distplot (: , y)=dist (: , 1) ;
distplot2 (: , y)=movingpoint (dim) ;
y=y+1;

end
end

end

%%% Lower boundary

lowertmp = −100;
movingpoint = tmpmodel_orig ;
stepsize = stepsize_orig ;
dist = zero s (counter*N_s , 1) ;

whi l e movingpoint (dim) > bounds (dim , 1) % Stop at lower ←↩
bound
% Find the d i s t ance to the owner o f the Voronoi ←↩

c e l l .
distpromis = norm(movingpoint−promising) ;

% Find the d i s t ance to a l l other models
f o r j=1:(counter*N_s)

dist (j , 1) = norm(movingpoint−models (j , 1 : l ength←↩
(m_start))) ;

end
sortdist = s o r t (dist) ;

% Bound i s met i f another model i s c l o s e r
i f sortdist (1) < distpromis

% Stop the search i f the d i s t ance to the border ←↩
i s

% l e s s than the border r e s o l u t i o n or the ←↩
s t e p s i z e

% can not be reduced f u r t h e r .
i f abs (sortdist (1)−distpromis) < ←↩

border_resolution | | stepsize < stepsize_min

lowertmp = movingpoint (dim) ;
break

e l s e
% The border r e s o l u t i o n i s not met or the
% s t e p s i z e can be reduced f u r t h e r .
movingpoint (dim) = movingpoint (dim) + ←↩

stepsize ;
stepsize = stepsize /2 ;

end
end

% Take a step
movingpoint (dim) = movingpoint (dim) − stepsize ;

%TESTING − the d i s t a n c e s to movingpoint
i f testing

i f dim==testdim && ins==1

B.3 Neighborhood search – Discretizing the axis xv

distplot (: , end+1)=dist (: , 1) ;
distplot2 (: , end+1)=movingpoint (dim) ;
y=y+1;

end
end

end

% Find the boundar ies .
upper = max(min (uppertmp , bounds (dim , 2)) , bounds (dim , 1)) ;
lower = min (max(lowertmp , bounds (dim , 1)) , bounds (dim , 2)) ;
i f lower > upper

e r r o r ('The lower boundary i s l a r g e r than the upper '←↩
)

end

% Find a new random point between the boundar ies
randstep = lower+(upper−lower) * rand ;
tmpmodel (1 , dim) = randstep ;

% Test ing
lowupranddim (lowupranddim_tmp , [1 2 3 4 5 6]) = . . .
[lowertmp , lower , uppertmp , upper , randstep , dim] ;
lowupranddim_tmp = lowupranddim_tmp+1;

end %ends dim loop

% Save the new model in models .
itmp = itmp+1;

i f onlyvelocity

models (counter*N_s+itmp , l ength (m_zs) +1: l ength (m_start))←↩
= . . .

tmpmodel (l ength (m_zs) +1: l ength (m_start)) ;
e l s e

models (counter*N_s+itmp , 1 : l ength (m_start)) = tmpmodel ;
end

end %ends i n s loop
end %ends index loop

counterlooptoc (counter) = toc ;
% Pr in t ing some prog r e s s
f p r i n t f ('%5.0 f i t e r a t i o n s o f ' , counter*N_s)
f p r i n t f ('%5.0 f done . ' , Itt*N_s+N_s)
f p r i n t f ('Time used : %5.2 f seconds . ' , counterlooptoc (counter))

time_used = sum(counterlooptoc) ;
time_first = counterlooptoc (1) ;
time_est = 0 ;
f o r i=2:Itt

time_est = time_est +time_first *2 ;
end
time_est = time_est *2 ;
f p r i n t f (' Estimated time l e f t : %5.2 f seconds . ' , time_est − ←↩

time_used)
f p r i n t f (' M i s f i t : %5.2 f \n ' , lastmisfit)

end %ends counter loop

time_finished = sum(counterlooptoc) ;
f p r i n t f ('Time used : %5.2 f seconds \n ' , time_finished)

% Calcu la te the m i s f i t o f the l a s t N s po in t s
f o r countermisfit=(counter*N_s+1) : (counter*N_s+N_s)

models (countermisfit , l ength (m_start)+1) = . . .
rms_data_many (. . .
models (countermisfit , 1 : l ength (m_zs)) , . . .

xvi Code

models (countermisfit , l ength (m_zs) +1: l ength (m_start)) , . . .
data) ;

end

% Sort the models a f i n a l time
[final_value , final_position] = s o r t (models (: , l ength (m_start)+1)) ;

i f testing

profile viewer

end

B.4 Neighborhood search – Exact intersection

% $Id : NeighborhoodRefined .m 137 2008−12−10 16 : 39 : 15Z t j ans son $
c l e a r a l l ; c l c ;
setuppath % Rede f ines the path inc lude the l i b f o l d e r
outputpath = ' /home/ t j ans son / ' ; % Folder c r e a t e images are saved to .
time = datestr (now , 'yyyy−mmdd−HHMM') ;
tegn = 1 ; % Save the f i g u r e s to harddisk

%% Algorithm parameters

Itt = 10 ; % The number o f i t t e r a t i o n s t h i s p roce s s should cont inue .
N_s = 20 ; % Amount o f models to c r e a t e at beg in ing and each l e v e l .
N_r = 2 ; % The amount o f models with the best m i s f i t .

%% Load the data
%data = load ('R NOR THOMAS CLEAN 1296 ') ;
%data name = [' Stat i on NORD'] ;
%data name f i l e = ['NORD'] ;
%data l ength = length (data) ;

% Def ine the data s e t s that you are t ry ing to f i t the func t i on to .
data_para = [2 0 , 35 , 5 . 80 , 6 . 5 , 8 . 0 4] ;
data = rf_forward (data_para (1 : 2) , data_para (3 : 5)) ;
data_length = length (data) ;
data_name = (' Synthet i c data ') ;
data_name_file = (' s y n t h e t i c ') ;

%% Setup the parameter space
% The upper and lower bounds o f the parameter space
% The s t a r t i n g model
zmin = 1 ;
zmax = 60 ;
layers_stepsize = 1 ;
layers = length (zmin : layers_stepsize : zmax) ;
modelyaxis = 'Depth [km] ' ;
m_zs = zmin : layers_stepsize : zmax ;
m_VP = 4:(8−4) /layers : 8 ;
m_start = [m_zs m_VP] ;
startmodel = rf_forward (m_zs , m_VP) ;

% Set the boundary o f the space
bounds (1 : l ength (m_zs) , 1) = 01 ; % Depth lower
bounds (1 : l ength (m_zs) , 2) = 60 ; % Depth upper
bounds (l ength (m_zs) +1: l ength (m_start) , 1) = 03 ; % Speed lower
bounds (l ength (m_zs) +1: l ength (m_start) , 2) = 09 ; % Speed upper

%% Calcu l a t ing Ce l l
% Generate the models array − to hold model parameters and m i s f i t
% (depth1 , depth2 , . . . , ve l1 , ve l2 , . . . , m i s f i t)
models = zero s (Itt*N_s , l ength (m_start)+1) ;

B.4 Neighborhood search – Exact intersection xvii

models (: , l ength (m_start)+1) = 10 ; % The i n i t i a l m i s f i t

% Populate the f i r s t N s models with random models
f o r i=1: l ength (m_start)

models (1 : N_s , i) = bounds (i , 1) +(bounds (i , 2)−bounds (i , 1)) * rand (N_s , 1)←↩
;

end

%% Calcu l a t ing Ce l l
t i c
f o r counter=1:Itt

%The m i s f i t o f the new po in t s are c a l c u a l t e d
f o r countermisfit=(1+(counter−1)*N_s) : (counter*N_s)

models (countermisfit , l ength (m_start)+1) = . . .
rms_data_many (. . .
models (countermisfit , 1 : l ength (m_zs)) , . . .
models (countermisfit , l ength (m_zs) +1: l ength (m_start)) , . . .
data) ;

i f mod (countermisfit , 5 0) == 0
f p r i n t f ('%5.0 f m i s f i t o f ' , countermisfit)
f p r i n t f ('%5.0 f \n ' , counter*N_s)

end
end

%The models i s so r t ed acord ing to m i s f i t va lue
[value , position] = s o r t (models (: , l ength (m_start)+1)) ;
itmp = 0 ;

% Just f o r the p l o t t i n g part
i f counter == 1

firstbestmodels = models (position (1 : N_r) , :) ;
end

% Pr int ing some prog r e s s
f p r i n t f ('%5.0 f i t e r a t i o n s o f ' , counter*N_s)
f p r i n t f ('%5.0 f done . ' , Itt*N_s+N_s)
f p r i n t f (' Timele f t around %3.0 f seconds . \n ' , 0 . 15* (Itt*N_s+N_s − ←↩

counter*N_s))

f o r index=1:N_r % For each o f the promis ing models

% Pr in t ing some prog r e s s
f p r i n t f (' Promising model number %5.0 f o f ' , index)
f p r i n t f ('%5.0 f \n ' , N_r)

% promis ing corresponds to po int A in the a r t i c l e
promising = models (position (index) , 1 : l ength (m_start)) ;

f o r ins=1:N_s/N_r % Generate N s/N r model i n s i d e each ←↩
promis ing model

%The g ib s sampler i s s t a r t e d at the cente r o f promis ing ←↩
point .

tmpmodel = promising ;

f o r dim=1: l ength (m_start)% We wish to take a step in each ←↩
dimension

% Create the po in t s the d e f i n e the i ' th a x i s .
steadyL = tmpmodel ;
steadyU = tmpmodel ;
steadyL (dim) = bounds (dim , 1) ;
steadyU (dim) = bounds (dim , 2) ;

xviii Code

f o r i=1:(counter*N_s)
% For each o f the other models we c a l c u l a t e the ←↩

d i s t ance to
% every other model to f i n d the boundary o f the ←↩

Voronoi c e l l

i f i==1 % This array should be c l e a r e d everyt ime i←↩
=1
boundary = zero s (counter*N_s , 1) ;

end

% This i s cur rent model from the whole s e t o f ←↩
models

cur = models (i , 1 : l ength (m_start)) ;

%d i s t k i s the pe rpend i cu l a r d i s t ance from sample k ←↩
from

%the cur rent a x i s . See Sambridge 1999 , page 485 ←↩
(19) .

%the cur rent a x i s i s de f ined as the one going ←↩
through

%the promis ing and the s teadypo int .

% a and b d e f i n e s the l i n e . v i s in the d i r e c t i o n ←↩
o f

% the l i n e
a = steadyL ;
b = steadyU ;
v = (b−a) /norm(b−a) ;
% Distance from promis ing to l i n e
c = promising ;
distk = s q r t (sum ((c−(a+v * ((c−a) *v '))) . ˆ 2)) ;
% Distance from cur rent po int to l i n e
c = cur ;
distj = s q r t (sum ((c−(a+v * ((c−a) *v '))) . ˆ 2)) ;

i f not (cur (dim) == promising (dim))
%Ca l cu l a t ing the boundary points , Sam. 1999 , p←↩

. 485 (19)
boundary (i , 1) = 0 . 5* (promising (dim) + cur (dim←↩

) + . . .
((distkˆ2 − distj ˆ2) /(promising (dim) − cur (←↩

dim)))) ;
end

end %ends i loop

%This removes the zero element o f boundary
boundary = boundary (f i n d (boundary)) ;

% With the newly c a l c u l a t e d d i s t a n c e s one can the f i n d ←↩
the

% upper and lower boundar ies o f the Voronoi c e l l .
% See Sambridge 1999 , page 485 (20 , 21)

% F i r s t I divde the boundar ies i n to the ones l a r g e r and
% sma l l e r than the promiss ing po int .
boundary_higher = bounds (dim , 2) *ones (l ength (boundary)←↩

, 1) ;
boundary_lower = bounds (dim , 1) *ones (l ength (boundary)←↩

, 1) ;
f o r j=1: l ength (boundary)

i f boundary (j) >= promising (dim)
boundary_higher (j) = boundary (j) ;

e l s e i f boundary (j) <= promising (dim)
boundary_lower (j) = boundary (j) ;

B.5 Levenberg-Marquardt xix

end
end

%lower = max(max(boundary lower , bounds (dim , 1))) ;
%upper = min (min (boundary higher , bounds (dim , 2))) ;

lower = max(boundary_lower) ;
upper = min (boundary_higher) ;

i f lower > upper
e r r o r ('Lower l i m i t i s l a r g e r than upper l i m i t ! ')

end

i f lower < bounds (dim , 1)
lower = bounds (dim , 1) ;

end
i f upper > bounds (dim , 2)

upper = bounds (dim , 2) ;
end

% S e l e c t a random number between upper and lower
randstep = lower+(upper−lower) * rand ;
% and saves t h i s i n to a temporary ho lder u n t i l t h i s has←↩

been
% done f o r every dimension .
tmpmodel (1 , dim) = randstep ;

% This d i s t ance should always be zero
%s q r t (d i s t k ˆ2+(promis ing (dim)−tmpmodel (dim)) ˆ2) − s q r t (←↩

d i s t j ˆ2+(cur (dim)−tmpmodel (dim)) ˆ2)

end %ends dim loop

% Save the new model in models .
itmp = itmp+1;
models (counter*N_s+itmp , 1 : l ength (m_start)) = tmpmodel (1 , 1 :←↩

l ength (m_start)) ;
end %ends i n s loop

end %ends index loop
end %ends counter loop

%The m i s f i t o f the new po in t s are c a l c u a l t e d
f o r countermisfit=(counter*N_s+1) : (counter*N_s+N_s)

models (countermisfit , l ength (m_start)+1) = . . .
rms_data_many (. . .
models (countermisfit , 1 : l ength (m_zs)) , . . .
models (countermisfit , l ength (m_zs) +1: l ength (m_start)) , . . .
data) ;

end
toc

B.5 Levenberg-Marquardt

% $Id : LevenbergMarquardt .m 137 2008−12−10 16 : 39 : 15Z t j ans son $
c l f ; c l e a r a l l ; c l c ;
tegn=1; % Save the f i g u r e s to harddisk
setuppath % Rede f ines the path inc lude the l i b f o l d e r
time = datestr (now , 'yyyy−mmdd−HHMM') ;
testing = 0 ;

%% Load the data
data = load ('R NOR THOMAS CLEAN 1296 ') ;

xx Code

data_name = ' Stat i on NORD ' ;
data_name_file = 'NORD ' ;
data_length = length (data) ;

% Def ine the data s e t s that you are t ry ing to f i t the func t i on to .
%data z s = [2 0 , 3 5] ;
%data VP = [5 . 8 , 6 . 5 , 8 . 0 4] ;
%data = r f f o r w a r d (data zs , data VP) ;
%data name = ' Synthet i c data ' ;
%data name f i l e = ' synthet i c ' ;

%% Setup the parameter space
% The upper and lower bounds o f the parameter space
% The s t a r t i n g model
zmin = 1 ;
zmax = 60 ;
layers_stepsize = 1 ;
layers = length (zmin : layers_stepsize : zmax) ;
modelyaxis = 'Depth [km] ' ;
m_zs = zmin : layers_stepsize : zmax ;
m_VP = 4:(8−4) /layers : 8 ;
m_start = [m_zs m_VP] ;
startmodel = m_VP ;

%% Algorithm parameters
% Set an opt ions f i l e f o r LSQNONLIN to use the medium−s c a l e a lgor i thm
options = optimset (' LevenbergMarquardt ' , ' on ' , . . .

' LargeSca le ' , ' o f f ' , . . .
' Diagnos t i c s ' , ' on ' , . . .
'MaxFunEvals ' , 20000 , . . .
' MaxIter ' ,1000 , . . .
'TolX ' ,1e−6, . . . %Termination t o l e r a n c e on x . d e f a u l t : 1e−6
'TolFun ' ,1e−6, . . . % Termination t o l e r a n c e on the func t i on value . ←↩

d e f a u l t : 1e−6
' Display ' , ' i t e r ') ;

%% Calcu l a t ing c e l l
d ia ry ([outputpath , ' Levenberg−Marquardt−Vel− ' , time , '− ' , data_name_file , '←↩

−diary . txt '])

t i c
% Calcu la te the new c o e f f i c i e n t s us ing LSQNONLIN.
[x , resnorm , residual , exitflag , output]=lsqnonlin (. . .

@misfit_data_many_levenberg_vel , . . .
startmodel , . . .
options , . . .
data) ;

calctime = toc ;

f p r i n t f (' \n\n Number o f i t t . : %3.0 f , ' , output . iterations)
f p r i n t f (' func . e v a l s : %4.0 f . ' , output . funcCount)
f p r i n t f ('Time : %3.2 f seconds \n ' , calctime)
final_misfit = rms_data (x , data) ;

d ia ry off

	Frontmatter
	Abstract
	Acknowledgment
	Preface

	Introduction
	Receiver functions
	Basic seismic
	Rotation of data

	What is a receiver function?
	Calculating the receiver function
	An example with three arrivals
	Deconvolution

	The wavelet

	Greenland data
	Retrieving the receiver function from observed data
	Stacking

	Data from Greenland

	Inverse problems
	Inverse problem theory
	The forward problem
	The inverse problem
	Probabilistic formulation

	Algorithms
	The Monte Carlo Family
	Uniform sampling
	The Metropolis algorithm
	The Neighborhood search algorithm
	Voronoi cells
	The behavior of the Neighborhood search algorithm
	Exploring the Voronoi cell
	Sampling the cell using Qhull
	Sampling the cell using discretized axis
	Sampling the cell using exact intersections
	Changing the misfit function

	The Levenberg-Marquardt algorithm
	Finding the minimum of S
	Levenberg's contribution
	Marquardt's contribution

	Algorithm and plotting considerations
	Plotting the results
	An insight into the complexity of the problem
	General description of the algorithms used on data
	Uniform search
	Metropolis
	Neighborhood search
	Levenberg-Marquardt

	Results
	Description of the plots
	Synthetic data
	Uniform search
	Metropolis
	Neighborhood search
	Levenberg-Marquardt

	Data from station Nord
	Uniform search
	Metropolis
	Neighborhood search
	Levenberg-Marquardt

	Discussion
	Comparison of algorithm performance on synthetic data
	The wavelet problem
	The importance of Ns in the Neighborhood search algorithm
	A non-linear problem
	Removing the P-pulse from the receiver function

	Conclusions
	Further work

	Bibliography
	Mathematics
	Convolution theorem
	Approximate Hessian
	The distance from a line to a point in 5 dimensions
	The distance from a line to a point in Ndim dimensions

	Code
	Uniform Search
	Metropolis
	Neighborhood search -- Discretizing the axis
	Neighborhood search -- Exact intersection
	Levenberg-Marquardt

